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Artificial intelligence (AI) is quickly becoming ubiquitous, particularly as part 
of solutions to defense problems in cyberspace. It seems like few companies 
want to risk marketing products that cannot be described using this term, 
perhaps for fear of losing ground to competitors who can. But what exactly is 

meant by AI? Is it all just marketing hype? The answer, of course, is far from simple. To 
move beyond the hype, we need to look at what AI is, what it is not and how the technol-
ogy needs to mature to live up to its promise. 

What it is

AI is a multidisciplinary field primarily associated with computer science, with influ-
ences from mathematics, cognitive psychology, philosophy, and linguistics (among oth-
ers). The term was originally coined at a Dartmouth College workshop in 1956 and con-
tinues to be characterized by cycles of excitement, marvel, and disappointment as we 
come to grips with and gain a better understanding of both its promises and limitations. 
Depending on who you ask, AI’s goals range from creating general intelligent systems to 
modeling human cognitive processes, to achieving superhuman performance on very spe-
cific tasks. An example of this is what we are beginning to see in image recognition sys-
tems through a machine learning technique called deep learning (more on that later).  For 
this article, we are focused on defining AI in terms of how it can improve the functionality 
of a system so that certain tasks require decreased human involvement and intervention.
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From a historical perspective, what is considered 
AI today may not be considered “intelligent” or “cut-
ting-edge” tomorrow. In the 1980s, a grammar checker 
seemed intelligent though such algorithms are now 
just part of word processing software. When web 
search started, people were amazed at search engines 
such as Google. Voice recognition is now integrated 
into our daily lives through technology such as Ama-
zon’s AlexaTMand Apple’s SiriTM; these AI technologies 
seemed “intelligent” when they first arrived on the 
scene but are now simply part of our lives. In the 
future, the same will be true for driverless cars, and 
other AI adopted technology.

At a high level, AI can be divided into two different 
approaches as shown in Figure 1 [1]: symbolic and 
non-symbolic; the key difference is in how each rep-
resents knowledge. Both approaches are concerned 
with how knowledge is organized, how inference 
proceeds to support decision-making, and how 
the system learns. For example, a spam filter may  
organize knowledge about an email message as a vec-
tor of words. The system learns as it is trained on 
whether messages are spam or benign. This training 
adjusts the system’s internal knowledge model. After 
training, each time a new email message arrives, the 
trained system infers whether the message is spam 
by comparing its features to the system’s underlying 
knowledge model. 
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Figure 1: A partial taxonomy of artificial intelligence
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Symbolic AI

In symbolic approaches to AI, system developers 
model real-world concepts, their relationships, and 
how they interact to solve a set of problems using a 
set of symbols (e.g., words or tokens). These AI ap-
proaches commonly use ontologies to organize knowl-
edge and heuristic-based rules to support reasoning. 
Symbolic systems may also learn, such as learning a 
decision tree based on provided examples or through 
learning an appropriate decision based on previously 
recorded, similar events. Symbolic AI requires con-
siderable knowledge engineering of both the problem 
and solution domains, which makes it fairly labor-in-
tensive. However, it yields results that are inherently 
explainable to humans since they are derived from 
human knowledge models in the first place. Symbolic 
AI systems include the expert systems that became 
prolific in the 1980s. These relied on extensive inter-
viewing of subject matter experts and time-consum-
ing encoding of their expertise in a series of condi-
tional structures. Unsurprisingly, these early systems 
were unable to adapt or learn absent human interven-
tion, which is a problem when we consider the num-
ber of exceptions that apply to almost all processes.  

The systems developed as part of the DARPA Cyber 
Grand Challenge are primarily symbolic AI systems. 
These automated reasoners can identify vulnerabili-
ties in software services, develop a patch, and deploy 
the patch at machine speed. To create these systems, 
the teams encoded the knowledge associated with the 
types of vulnerabilities they might find (a form of an 
ontology), the procedures for finding the vulnerabili-
ties (search and reasoning), and possible methods to 
remediate those vulnerabilities (decision-making). 
The systems learned in the sense that they were able 
to explore their environment (i.e. the network that 
they were a part of) and identify vulnerable services. 
However, that learning did not include finding new 
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vulnerabilities for which they were not previously encoded to identify. Furthermore, the sys-
tems did not learn how to identify new vulnerabilities by being trained on previous vulner-
abilities through offline learning (i.e., learning from data before the system is deployed), 
which is common in the non-symbolic, statistical machine learning approaches discussed 
below. Nonetheless, these systems generated impressive results and will prove useful as we 
continue to investigate ways to make cyber defense more autonomous.

Modern symbolic systems are exemplified by cognitive architectures that emulate the way 
in which our human brains work. Systems like Carnegie Mellon University’s Adaptive Control 
of Thought - Rational (ACT-R) and the University of Michigan’s Soar (both open-source proj-
ects) are commonly used to build AI systems that can solve large sets of complex, real-world 
problems. Like their early symbolic predecessors, ACT-R and Soar require a fair amount of 
knowledge engineering in the form of building cognitive models to bootstrap them. Unlike 
early systems, however, these newer cognitive frameworks are capable of learning through 
interactions with their environments without human assistance and incorporate non-sym-
bolic, machine learning approaches as part of their architectures. These “co-symbolic” (i.e. 
a hybrid symbolic/non-symbolic system) approaches appear to be where AI is heading as it 
takes advantage of the non-symbolic learning with the explainability of symbolic systems.

Non-symbolic AI

Another approach to AI departs from the use of symbolic representations of human knowl-
edge and focuses instead on learning patterns in data for classifying objects, predicting future 
results, or clustering similar sets of data. Non-symbolic AI approaches are where many of the 
most recent advances have occurred, primarily in classification tasks such as image and voice 
recognition. In the current vernacular, these non-symbolic approaches are commonly called 
machine learning (ML) even though, as we just discussed, symbolic systems may also learn. 
As with symbolic approaches, non-symbolic ML systems also incorporate knowledge repre-
sentations and reasoning. The knowledge representation is typically quantitative vectors (i.e., 
non-symbolic) with features from the dataset that describe the input (e.g., the pixels from an 
image, frequencies from an audio file, word vectors). Whereas symbolic AI requires consid-
erable knowledge engineering, non-symbolic AI generally requires significant data acquisi-
tion and data curating, which can be labor-intensive even for domains where data is readily 
available. However, rather than having to program the knowledge as in a symbolic system, 
the non-symbolic ML system learns its knowledge, in the form of numeric parameters (i.e., 
weights), through offline [2] training with datasets with millions of examples. The most success-
ful non-symbolic ML approaches today are supervised learning, where the datasets include a 
label or the “answer” for the correct classification. As training progresses, the ML model learns 
the correct parameters (i.e., weights) that minimize a cost function enabling the match of input 
patterns to an output classification or prediction. Reasoning then occurs when the trained ML 
model receives input from the operational environment and infers a classification.
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Classification determines the class of a new sample based on what is known about previ-
ous samples. A common example of this is an algorithm called k-Nearest Neighbors (KNN), 
which is a supervised learning technique in which the nearest k neighbors influence the 
classification of the new point (e.g., if more than half of its k nearest neighbors are in one 
class, then the new point also belongs in that class). For cybersecurity, this is helpful when 
trying to determine whether a binary file is malware or detecting whether an email is spam. 

Prediction compares previous data samples and determines what the next sample(s) 
should be. If you ever took a statistics class in college, you may recall a type of analysis called 
regression, in which you try to determine the line (or curve) that most closely approximates 
a sequence of data points. We use the same approach to prediction in ML by learning from 
previous observations to determine where the next data point(s) should appear, which is 
useful for network flow analysis. 

In clustering, or unsupervised learning, on the other hand, we do not have a preconception 
of which classes (or even how many) exist; we determine where the samples naturally clump 
together. One of the most frequently-used clustering algorithms is k-Means clustering, in 
which new data points are added to one of the k clusters based on which one is closest to the 
new point [3]. Clustering is useful for anomaly detection. 

Finally, reinforcement learning tunes decision-making parameters towards choices that 
lead to positive outcomes in the environment. For example, one might have a security ana-
lyst provide feedback to an anomaly detector when it incorrectly classifies a benign alert as 
malicious (i.e., false positive). This feedback adjusts the internal model’s weights so that the 
anomaly classification improves.

ML can be divided into two schools of thought. The first school tries to model the physiol-
ogy of the brain and, specifically, the roles of neurons and synapses. This school gave rise to 
artificial neural networks, which break down complex problems into a multitude of tiny prob-
lems. For example, the problem of finding a face in a photograph is commonly broken down 
into problems such as deciding whether an eye, nose, and ear are in the frame and whether 
they are in the correct locations relative to each other. The “connection” between neurons is 
a simple mathematical function so that the output of the first neuron (e.g., there is an eye in 
the frame) is fed into the input of the next connected neuron by a multiplicative parameter 
that determines the weight of the connection. These parameters, or weights, are what are ad-
justed through algorithms such as backpropagation that enable the system to learn to match 
the input pattern to the desired output classification or prediction. 

Neural networks are assembled into layers so that neurons in the same layer seldom pass 
data to each other and, instead, pass it to the next layer. The more layers you have, the more 
complex the problem you can classify or predict (e.g., the difference between classifying 
handwritten digits versus classifying dogs and cats in an image). A neural network with 
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many layers [4] is considered capable of deep learning. A fairly deep neural network will re-
quire significantly more computing resources and training data than its “shallow” brethren. 
Therefore, depending on the problem at hand, deep learning may be an undesirable overkill.

The second school of thought in ML dispenses with any attempt to model physiology and 
focuses instead on mathematical algorithms that exploit anything from Euclidian distance to 
statistical regression to probabilistic (e.g., Bayesian) methods. Regardless of to which school it 
belongs, all ML is focused on specific features of the data (e.g., source IP address, interarrival 
rate). Given enough prior data, we can usually find good ways to classify, predict, or cluster new 
observations. The catch is that many, if not most, cybersecurity applications, require labeled 
(or at least partially labeled) data sets that represent the statistical distribution of the data in 
the operational environment. This means that if we want to train a supervised ML system to 
recognize malicious traffic, we need that traffic to be labeled as such and it must be represen-
tative of the number of malicious samples we would see in the real world. Acquiring these 
realistic and sufficiently large sets of labeled training data is often a significant challenge.

What it is not

AI has shortcomings that one must consider before employment. Neither symbolic nor 
non-symbolic AI approaches cope well with novel situations and require a human to re-engi-
neer (symbolic) or retrain (non-symbolic) the algorithms. Symbolic, knowledge-engineered 
systems may contain underlying biases of the individual(s) who encode the system. Training 
data sets for non-symbolic approaches may contain biases that are not representative of the 
operational environment. These biases lead to either false positives, or worse, false negatives 
when the system is deployed. Such situations ultimately erode a user’s trust, especially if the 
user has no avenue to investigate how the underlying AI arrived at its decision. This prob-
lem can be exasperated with non-symbolic approaches as they are steeped in mathematical 
equations. The underlying reasoning that supports inferences is inherently uninterpretable. 
Users of these systems do not have a way to interact with the system, question it, and receive 
an explanation as to how it arrived at its decision.

There are also cybersecurity concerns related to the employment of AI. Non-symbolic, 
ML systems can be spoofed by introducing imperceptible variations into the input, thereby 
causing a cybersecurity product to change its classification of a malicious document from 
“bad” to “good.”  Because both symbolic and non-symbolic AI systems are designed to make 
progress towards multiple goals, cyber-attackers could inject data into the environment that 
leads to goal conflicts, resulting in undesirable behaviors.  For example, in swarm systems, 
modifying the perceived goal of a single agent could cause the entire multi-agent swarm to 
act unpredictably. To address these issues, AI systems will need to bring situational context 
to bear and use that context to determine whether the situation is in line with expectations. 
Outcomes that do not fit expectations would then cued for further investigation and provide 
opportunities for additional learning.  



FERNANDO MAYMÍ : SCOTT LATHROP 

FALL 2018 | 77

Where we are

We need synthetic agents that can act as our teammates in cyberspace, particularly in 
Defensive Cyberspace Operations (DCO). The task is daunting because of the breadth of ca-
pabilities that such an agent would need. Below are some of the most important ones.

m  Sense. Though we have many ML systems that can sense a variety of phenomena in cy-
berspace, these platforms are narrowly focused on specific applications. What we need 
is a generalized ability to ingest and integrate information from multiple sources for a 
variety of purposes. Ideally, humans and synthetic agents would use the same tools for 
sensing the environment so that sensors can be operated by either.

m  Think. Autonomous agents make decisions based on what they sense in their environ-
ment combined with what they already know. At a minimum, the agents must respond 
appropriately to events for which they have an “approved solution” and investigate am-
biguous situations when the situational context does not meet their expectations to un-
derstand and make adjustments. They should also experiment with novel solutions to 
new situations, learning what works and what doesn’t along the way.

m  Communicate. If they are to be true teammates, our synthetic counterparts must know 
when and how to share information with their human counterparts. Their speed and 
capacity will preclude sharing everything in real time, but they must spontaneously 
reach out to their human supervisors when encountering specific situations and before 
embarking on risky exploratory behavior. The idea is to move the human to be on the 
loop instead of in it. Obviously, the agent must be able to respond to orders and ques-
tions from its human teammates and explain what it is doing and why in terms humans 
can understand.

m  Act. It does us no good for agents to detect incidents and then not be able to respond 
autonomously. Clearly, we’d want to put bounds on risky responses, but faced with the 
eventuality of synthetic attackers, we can’t afford to wait on significantly slower human 
responses. This act capability is the counterpart of the sense capability discussed earli-
er. Similar to sensing, the agents should influence their environments using tools that 
they could exchange with their human teammates at any point in an operation. 

m  Learn. In many ways, this is the most mature of the five requirements. We have a variety 
of learning mechanisms for both symbolic and non-symbolic AI that allow autonomous 
agents to improve their performance and adapt to changing environmental conditions. 
Still, we have some work to do improving agents interactions with a variety of human 
and synthetic teammates. We also need them to learn the adversary’s behavior at a cog-
nitive level rather than just recognizing their tools and left-behind indicators.  
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For the past two years, we have led research work on developing prototypes of offensive, 
defensive, and generic cyberspace agents that explore some of the building blocks required 
to provide these five capabilities. This family of synthetic teammates, called Cyber Cognitive 
(CyCog) agents is depicted in Figure 2. They all share a core system (CyCog) that they each 
refine with additional capabilities; this allows for time savings through software reuse.

The attacker version, CyCog-A, is intended for penetration testing and adversarial emula-
tion during training events. CyCog-D is its defensive counterpart, which has only been used 
in support of training but already incorporates features that would allow it to effectively 
modify firewall and intrusion detection system (IDS) configurations in response to attacks. 
Finally, we are developing generic persona agents (CyCog-P) that behave as cyberspace den-
izens modeled after real users of a network under study. 

Because these agents are built on the Soar cognitive architecture, primarily a symbolic 
form of AI with some inherent non-symbolic features to support reinforcement learning and 
spatial reasoning, their cognitive models are inherently understandable by humans. This 
feature is illustrated in Figure 3, where we show an example goal tree (i.e., decision-making 
process) with a leaf node indicating an actual on-net action (i.e., sending a phishing email). 
This representation is easy to follow as the behavior model follows the cognitive processes of 
an attacker. Recall, however, that the bane of symbolic AI is this need for human-built mod-
els. Wouldn’t it be possible to build AI systems that autonomously generate these?

Figure 2: Genealogy of Cyber Cognitive (CyCog) agents
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Figure 3: Partial CyCog-A goal tree showing a successful phishing attack
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As an initial exploration of this possibility, we are in the early phases of a research project 
for the Office of Naval Research that seeks to develop ML modules that observe cyberspace 
activities, piece them together into procedures, and finds interesting (i.e., anomalous) ones. 
Codenamed Twiner, this system will allow us to reason over the three layers of cyberspace 
as defined by the U.S. DoD: persona, logical, and physical. By doing so, we believe we’ll be 
able to detect behavioral patterns that would not be evident by looking at just one of these 
layers. This project will lay the groundwork for the autonomous identification of adversarial 
procedures and techniques, which, in turn, will allow us to automatically generate behavioral 
models and thus overcome one of the great limitations of symbolic systems.

The road ahead

Followed to its logical conclusion, Twiner and CyCog exemplify the symbiosis that re-
sults from leveraging both symbolic and non-symbolic approaches. Each plays to its own 
strengths while mitigating the limitations of the other. We already discussed how we could 
build non-symbolic AI systems that could observe cyberspace activities and build behavioral 
models for the symbolic AI agents. Conversely, these agents would be able to reason and act 
over a much broader set of observations, problems, and solutions than a non-symbolic AI 
system ever could. 

A key takeaway from this paper is that to realize the full potential of AI, we must integrate 
its various forms in order to offset the limitations of each. No one approach will be sufficient 
because each approach is optimized for one specific set of problems at the expense of others. 
We can see this sort of integration in our own brains. According to Daniel Kahneman in his 
bestselling book Thinking, Fast and Slow, our brains leverage two systems: system 1 is fast, 
automatic and very task-specific (analogous to non-symbolic AI), and system 2 is slower, 
effortful and able to make complex decisions (analogous to symbolic AI). We all have cogni-
tive mechanisms that allow us to switch from one to the other, and so should our synthetic 
teammates.

Good bedfellows

This paper has chronicled where we started, where we are, and where we should be going 
in the development of AI for cyberspace. Along the way, we have provided a fair amount of 
details about AI and ML. So, with all this in mind, how can you tell when someone is using 
these terms appropriately and when they are just hyping and overusing the terms? Below 
are three ideas you can try the next time someone wants to sell you on their version of AI.

Ask lots of questions. This may sound obvious, but many of us hesitate to ask questions 
when we think we know very little about a topic. We also tend to assume that if others speak 
authoritatively, then they must know what they’re talking about. Even if you do not fully 
understand the responses (and you should keep drilling until you find something that makes 
sense), the manner in which others respond to your probing questions will tell you a lot 
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about their level of knowledge and how their solution works. Keep in mind that they usually 
cannot tell how much you know about AI, so they may get uncomfortable and be betrayed by 
their speech and body language. For better results, combine questions with the next sugges-
tion: term familiarity.

Be familiar with key terms. Recall that, at their core, non-symbolic (a.k.a. ML) techniques 
are most commonly used for three purposes: classification (e.g., k-Nearest Neighbors or KNN), 
clustering (e.g., k-Means), and prediction (e.g., regression). They all work on features of the 
data they analyze (e.g., source IP address, interarrival rate), typically require large data sets, 
and always have a non-zero false positive error rate. Conversely, symbolic techniques require 
modeling of human knowledge that typically involves cognitive modeling and/or task analy-
sis. As a starting point, you can make a list of all the italicized terms in the preceding text 
and learn a bit more about them. Even a summary understanding of them will go a long way 
in helping you tell when someone is trying to bamboozle you.

Call a friend. Most of us cultivate a diverse professional social network. Odds are that you 
know a couple of people who know enough about AI to help you separate the wheat from the 
chaff. (If you do not, this would be a perfect time to start making such friends.) Find them and 
ask for their opinion. Better yet, bring them along when you meet whoever will present to you 
their AI-powered solution. If the presenter lacks honesty or expertise, your friend should be 
able to tell right away even if you can’t. Otherwise, it will be helpful to have someone who can 
help you translate the lingo, so you understand what is happening under the hood. 
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NOTES
1. As with all taxonomy classifications, such as the one in Figure 1, variations exist. For example, a symbolic, rule-based sys-
tem can have non-symbolic mechanisms (e.g. reinforcement learning) and a non-symbolic approach can use symbols such 
as a neural network that outputs a classification label such as ‘cat’, ‘dog’ from an ingested image of pixels.
2. Offline learning occurs in an environment separate from where the system is deployed. Online learning is when the system 
learns as it is operating in its intended environment.
3. Despite using the same letter for their namesake variable, KNN and k-Means are entirely different algorithms for  
different purposes and with different requirements. The details, however, are beyond the scope of this paper.
4. It is not clear how many layers in a neural network one has to have before it is considered a deep neural network.  
Ten layers or more is often considered the benchmark.


