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ABSTRACT  

In the field of Artificial Intelligence (AI), Machine Learning (ML) techniques and 
algorithms have been employed in a wide variety of domains and have demonstrated 
incredible capabilities as well as continued applicability to an ever-expanding num-
ber of areas and applications. Image and speech recognition, medical diagnosis, 
classification and prediction, information extraction (i.e., deep learning), commer-
cial market and customer analysis, robotics, and self-driving vehicles are a few of 
the many areas where ML has either made possible or had a significant impact. Yet 
for all this progress, the field of AI has not yet approached what many consider the 
holy grail of AI:  machines with human-like intelligence. Causal analysis is essential 
for realizing the vision of human-like reasoning: it brings the ability to determine 
cause-effect relationships and provides a basis for reasoning about interventions 
(i.e., doing), as well as what might have happened had events occurred different-
ly (i.e., imagining/retrospection) which are fundamental characteristics of human 
reasoning. Causal analysis has seen widespread use and success in epidemiology, 
social science, and other fields for decades. Even so, its use in engineering, comput-
er science, and AI has been limited and its potential is just beginning to be widely 
recognized and applied.
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INTRODUCTION

In the field of Artificial Intelligence (AI), Machine 
Learning (ML) techniques and algorithms have 
been employed in a wide variety of domains and 
have demonstrated incredible capabilities as well 

as continued applicability to an ever-expanding number 
of areas and applications. Image and speech recogni-
tion, medical diagnosis, classification and prediction, 
information extraction (i.e., deep learning), commercial 
market and customer analysis, robotics, and self-driv-
ing vehicles are a few of the areas that ML has either 
made possible or has had a significant impact on. The 
success of ML is indisputable and will continue to be an 
important technology for the foreseeable future.

Two grainy film shots taken at Bell Laboratories in 
1952, highlight mathematician and Bell Labs research-
er Dr. Claude Shannon’s own construction of a robot-
ic, maze-solving mouse known as Theseus, one of the 
world’s first examples of machine learning (Figure 1).

The Theseus of ancient Greek mythology navigat-
ed a minotaur’s labyrinth and escaped by following 
a thread given to him by Mino’s daughter, Ariadne, 
which he had used to mark his path. But Shannon’s 
electromechanical marvel was able to “remember” its 
path with the help of telephone relay switches.[1]

Shannon’s wheeled mouse methodically explored its 
surroundings—a 25-square maze. Shannon tells viewers 
that the maze’s metal walls can be freely rearranged, so 
Theseus must use a small computing machine to learn 
the layout anew each time. But the mouse, a tiny wood-
en device containing a bar magnet and adorned with 
wire whiskers, is far too small to contain a computing 
machine. Instead, the machinery is hidden beneath the 
floor of the maze, a series of telephone relay circuits he 
has repurposed to do something that they had never 
done before: learn.[1]

Theseus was also ahead of its time, and “inspired 
the whole field of AI,” says Dr. Mazin Gilbert, who 
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was the Vice President of Advanced Technology with 
AT&T Laboratories. The mouse, who was featured in 
Popular Science, Time, and Life magazines the same 
year the film was made, learned purely through trial 
and error. Dr. Gilbert explained that “this random trial 
and error is the foundation of artificial intelligence.”[1]  

Figure 1: Theseus in Action[1]

Although there has been much progress made in AI 
since Theseus, the field of AI has not yet approached 
what many consider the holy grail: machines with hu-
man-like intelligence. In the 1950’s, Alan Turing de-
veloped what became known as the “Turing Test” to 
determine if a machine had achieved intelligence. If 
an evaluator cannot tell whether they are interacting 
with a human or a machine over a text-only channel, 
the machine is said to have passed the test.[2] Whether 
the Turing Test is sufficient to demonstrate human-like 
intelligence has long been debated. What is not debat-
able is that systems exhibiting some level of intelligent 
behavior as well as the ability to learn complex and 
increasingly sophisticated tasks have been developed 
for decades. However, many feel this progress has pla-
teaued and has failed to reach human-like intelligence.

A prominent voice in the AI community and the de-
veloper of Bayesian networks, Judea Pearl,[3] maintains 
that the ability to determine and reason about causality 
(i.e., cause and effect) is fundamental to human intel-
ligence because it allows one to answer the question, 
“why?” Current ML techniques and algorithms cannot 
reach this level of inquiry because they are largely 
based on discovering associations in data (i.e., correla-
tion) based on the passive observation of a system or 
post-hoc data analysis. This approach limits what can 
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be achieved; it cannot determine cause-effect relationships because, fundamentally, ML algo-
rithms use what statisticians call observational data. Observational data, except when carefully 
collected via randomized controlled experiments, cannot be used to uncover cause-effect rela-
tionships. What Pearl has dubbed the New Science of Cause and Effect[4] or causal analysis, is 
the ability of AI to determine cause-effect relationships from observational data under modest 
conditions in which actual systems operate. Furthermore, causal analysis provides the basis 
for reasoning about the effect of changing aspects of system operation without actually doing it 
(i.e., interventions), as well as reasoning about what might have happened had events occurred 
differently (i.e., imagining/retrospection). Causal analysis has had widespread use and success 
in epidemiology, social science, and other fields for over a decade.[4][5][6][7] 

Its use in engineering, computer science, and AI, however, has been limited and its potential 
is just beginning to be widely recognized and applied. The background section that follows 
briefly discusses why typical inference systems (e.g., those using 1st/2nd order logic or con-
straint satisfaction) and data analysis alone is insufficient to determine causal relationships. 

Background

Predicate and propositional logic has long been used to allow AI to reason about various 
combinations of propositions and the relations between them, as well as to determine whether 
a logical formula is true over a particular logical element or range of elements in the domain 
under consideration. This and other higher order logic systems constitute a fundamental basis 
for inference in computer science, mathematics, and other areas of science. They are essential 
and irreplaceable. Nevertheless, they do not provide a sufficient foundation for reasoning about 
cause and effect.

Consider as a simple example a naïve application of the chain rule which infers a conclusion 
from a set of implications. The chain rule for two implications can be shown symbolically as:  
A  B, B  C  A  C or if A then B, if B then C, therefore if A then C. Though the conclusion 
is valid and the propositions are true, this type of reasoning fails to correctly assess causality 
when applied to ordinary everyday situations which even a child would be able to assess cor-
rectly. For when the symbols are said to represent actual objects the results can be nonsensical. 
For instance, let A  B be, “If we break the bottle, the grass will get wet.” Let B  C be, “If the 
grass is wet, then it rained.” An application of the chain rule would then produce A  C, “If 
we break the bottle, then it rained.” While simplistic, this example illustrates a fundamental 
limitation of many logic systems that are restricted to manipulating symbols. Causal or com-
mon-sense relationships between propositions cannot be specified because all propositions, as 
propositions, are interchangeable. This equivalence of propositions is what gives these kind of 
logic systems wide applicability but simultaneously limits their usefulness in causal analysis.

Consider another reasoning approach that had its genesis in AI and operations research: 
constraint satisfaction. Constraint satisfaction finds feasible solutions to achieve specified 
goal(s) under a given set of constraints while considering the capabilities of the agent(s) and 
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the problem domain. The following example,[8] illustrates this approach. Suppose we have a 
suitcase with two locks: one on the left and the other on the right. The state of the suitcase, 
open or closed, depends on the position of the locks as shown in Table 1. If both locks are open 
the suitcase will open (#1), otherwise the suitcase will remain closed (#2-4). The constraint 
to be satisfied is the suitcase remaining closed. Consider the case where the suitcase is in 
state #2, the left lock is closed and the right lock is open. A query submitted to the constraint 
satisfaction system asks, “What would happen if the left lock were also opened?” This is a 
causal question and should result in the answer that the suitcase would open (#1). However, 
the response received from the constraint satisfaction inference engine was, “The right lock 
might get closed.” Clearly an incorrect assessment of what should result! The reason for this is 
such systems are designed to ensure the specified constraint(s) are maintained, not to assess 
common sense causal effects.

Table 1: Suitcase State

	 Left	 Right
	 Lock	 Lock	 Suitcase
1.	 Open	 Open	 Open
2.	 Closed	 Open	 Closed
3.	 Open	 Closed	 Closed
4.	 Closed	 Closed	 Closed

Finally, consider a system from which we can observe/collect binary information from five 
entities labelled A through E that constitute the system as shown in Table 2.[4] The goal is to de-
termine whether there is a causal relationship between entities A and E. That is, does A cause 
E? Clearly A is correlated with E (and with B, C, and D). In fact, all the pairwise entities are cor-
related. Equally clear is that additional data (given they remain all 0’s or 1’s) will not help clar-
ify the situation. Causality cannot be determined in this situation because, as every Statistics 
101 student learns, correlation does not necessarily imply causation. The fact remains, though, 
that the converse is true. Causation necessarily implies correlation. Human reasoning exploits 
this fact in the quest for knowledge and in search for the answer to the question, “why?”

Table 2: Binary System Data

 
Entities

A	 B	 C	 D	 E
1	 1	 1	 1	 1
0	 0	 0	 0	 0
1	 1	 1	 1	 1
1	 1	 1	 1	 1
0	 0	 0	 0	 0
0	 0	 0	 0	 0
1	 1	 1	 1	 1
1	 1	 1	 1	 1
1	 1	 1	 1	 1
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Vision and Objectives

The vision described here is a lofty one: to enable human-like reasoning (i.e., cognition/
common sense) in Autonomous Systems (AS) and Intelligent Machines (IM). Achieving this 
vision will require the ability to make causal inferences and engage in causal reasoning in 
near real-time. The objective of this article is to take the next logical step towards enabling 
this vision by developing a Causal Reasoning Framework (CRF) that will provide the founda-
tional framework and capability for causal reasoning.

Causal Reasoning

Causal reasoning is not complicated. Causal reasoning begins implicitly or explicitly every 
time the question, “why?” is asked. People want to know the cause of what happens; they 
inherently want to understand reality. “Why did this person die from lung cancer and that 
person live?”; “Why was this product profitable and that product a failure?”; “Why didn’t the 
firewall protect the network?”; “Why do rocks drop down instead of up?” Because causal rea-
soning is the ordinary method of inquiry for human beings, we typically do not even think 
about it.

Reasoning is more formal in the fields of science and engineering, but the end goal is the 
same: to answer the question, “why?” The typical approach is to systematically sample a 
population or system of interest, P, and analyze the sample data as depicted in Figure 2. Sta-
tistical inference based on this sample data allows conclusions to be drawn about properties 
of P being measured, Q(P) at some level of confidence. This statistical inference process is 
sample data-centric.

 

 Figure 2: Statistical Inference[9]

As shown in Figure 3, the focus in causal inference shifts from P to the causal model M, 
where the joint distribution of the data that comprises P is generated. That is, the goal of 
causal inference (as distinct from statistical inference) is to discover the causal model M that 
produced P. As Figure 3 indicates, sample data still plays a critical role in that it is used to 
make inferences about the properties, Q(M), of M. But as will be shown, with M one can now 
reason about the effect on P of interventions (i.e., the effect of changing M) or given that M 
is known or has been discovered, one can reason about what would have happened if M had 
been different even in the absence of any sample data from P. Causal models are not data 
models, they are reality models.[4]
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Figure 3: Causal Inference[9]

Pearl has developed a model of human reasoning that he calls the Ladder of Causation.[4] At 
the bottom rung of the ladder is Association whereby the probability of observing y given x 
was observed or P(y|x) is ascertained. This corresponds to the human activity of observation. 
These probabilities are ascertained via data collection (i.e., passive observation). Except for the 
specialized case of randomized controlled experiments which are specifically engineered to 
uncover causal relationships, almost all of ML uses passive observation to produce its results 
by calculating conditional probabilities of an event at a given level of confidence. Typical ques-
tions that can be answered at this rung of the ladder include: “What does a symptom (x) tell me 
about a disease (y)?” or “What does sales data (x) tell me about my customer (y)?”

The next rung up the ladder is Intervention. This corresponds to the human activity of doing. 
Under intervention, the experimenter is no longer a passive observer but actively changes the 
data generating process M. With intervention, the probability of observing y given I do x or 
P(y|do(x)) is ascertained. The operator, do(x), signifies Pearl’s do-calculus[3] has been applied. 
The do operator is one of the most significant results of Pearl’s causal research because it en-
ables one to use observational data to determine causal relationships under certain conditions. 
Previously, the main reason observational data could not be used to determine causal relation-
ships was due to statistical confounding whereby multiple effects (possibly containing causal 
or merely correlated effects) were mixed together. When confounded, these effects can neither 
be distinguished nor separated from each other. Hence the term, “confounded.” One of Pearl’s 
main technical achievements is the development of the do-calculus, where causal effects can 
be determined from observational data in most situations under mild conditions.[3] Example 
questions that can be answered at this rung of the ladder include: “If I take aspirin (do(x)), 
will my headache go away (y)?” or “What would happen to the cancer rate (y) if smoking were 
banned (do(x))?”

The third and final rung of the ladder is Counterfactuals, which corresponds to the human 
activity of imagining or retrospection. On this rung, the experimenter can reason about the 
probability something would happen contrary to what actually occurred. Mathematically this 
is written as P(yx|x'). “Would my headache have gone away (yx), if I hadn’t taken (x') that aspi-
rin (x)?” or “What would the world be like (yx) if gravity were different (x') than it is (x)?” are 
examples of the types of questions that can be asked at this level.

Causal reasoning is the distinguishing characteristic of human reasoning and inquiry. Many 
contend with Pearl that human-like reasoning in machines cannot be realized unless machines 
are able to operate at all three rungs of the Ladder of Causation.[4]
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Causal Models

Figure 4, below, is an example of a simple causal model represented by a causal diagram. 
A causal diagram is nothing more than a directed acyclic graph (DAG) where the nodes are 
measurable outputs (i.e., variables) of a system and the directed edges indicate a causal rela-
tionship between them. Informally, the directed edges can be thought of using the metaphor 
“listens to.” The directed edge from A to B indicates that B listens to A when determining its 
output value. Similarly, nodes C and D listen to B to set their output value, while E listens to 
both C and D.

The absence of an arrow is equally important as this indicates who a node does not “listen 
to.” Thus, in Figure 4 the one edge from A to B asserts that Node B listens to A and only A in 
determining its output value. Thus, DAG models the invariant causal relationships that are 
either known or assumed for a given process or system. If the functional relationship between 
the nodes is known, this can be included in the causal analysis. The formal abstract model of 
Figure 4 is: 

 

A=fA(UA), B =fB(A, UB),
C=f(B,UC), D =fD(B, UD), and
E=fE(C,D,UE)

Figure 4: Causal Diagram of a Simple System[4]

where Ux is some unmeasured or unmeasurable latent variable (e.g., noise), and fx is a func-
tion that defines precisely how the node determines its output value. This function, fx, can be 
linear or non-linear, continuous, or discrete, parametric or non-parametric.

Even without knowledge of the actual functional relationships between nodes, the represen-
tation of who listens to whom shown in a simple DAG provides a significant amount of struc-
tural information. First, it makes explicit the known or assumed causal relationships within 
the system. Thus, the DAG forces an analyst to show their hand, thereby openly declaring as-
sumptions and/or presenting their knowledge about how a system operates. Second, if the DAG 
accurately captures the actual causal relationships in a system, certain statistical relationships 
or testable implications will be reflected in the data. For example, if Figure 4 reflects the actual 
causal relationships of a given system then particular conditional independencies between 
nodes will be reflected in data collected from the system. These can be easily checked using 
virtually any statistical software package. In Figure 4 the following conditional independencies 
(i.e., ) must hold: B  E | C, D; A  E | C, D; A  E | B; A  C | B; A  D | B; and C  D | B.

Consider the first conditional independence, B  E | C, D. This asserts that given the values 
C and D are held constant, say via intervention, the variables B and E will exhibit statistical 
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independence. If these conditional independencies do not hold, then the data and the DAG are 
incompatible. What follows from this is, even when the testable implications hold, that does 
not constitute a proof that the specified causal model is correct, but rather indicates that the 
specified model is not incorrect. This is akin to statisticians declaring that two systems are 
statistically not different. One cannot properly declare two different random variables the same 
because the observation period is necessarily finite. This means there may be several causal 
models compatible with the data. This should not be seen as a negative as it provides a ready 
basis for reasoning about plausible explanations for what has been observed.

Take as a concrete example the previously presented data from Table 2 and the causal dia-
gram from Figure 4. Since edges represent causal relationships, the question that could not be 
answered before from the data alone, namely, does A cause E can now be answered affirmitive-
ly. A does cause E because E listens to D, D listens to B, and B listens to A—a chain of causality.

The causal diagram of Figure 4 is actually a causal diagram of a firing squad.[4] As shown 
in Figure 5, Node A represents the court which, when it takes on the value of 1, has issued an 
execution warrant. Node B is the Commander who without fail issues the order to fire (i.e., 1) 
upon receiving a warrant. The riflemen (Nodes C and D) are expert marksmen who always fire 
when ordered to do so by their Commander (i.e., 1) and always hit their target. Node E is the 
victim who dies (i.e., 1) whenever either (or both) C and D fire. The triangular symbol in Node A 
indicates it is the exposure variable while the “I” in Node E indicates it is the outcome variable. 
This graphically depicts the question, “Does A cause E?” or, “Is the Court issuing the warrant 
causally related to the death of the victim?” Of course, the answer is yes. But this was impossi-
ble to ascertain from the data in Table 2 without knowing the data generating process (i.e., M). 

 

Figure 5: Causal Diagram of a Firing Squad[4]

The data in Table 2 reflects the firing squad operating as intended. However, now that the 
data generating process M is known, questions from rungs higher in the Ladder of Causation 
can be answered that before could not be determined using only the data collected from the 
system. For example, it was previously determined that A causes E. But what would the value 
of E be if, due to an intervention, C was set to 1? This situation is reflected in Figure 6. Note that 
C no longer listens to B; the arrow has been removed. The question being asked is essentially: 
What is the value of E if C is 1, independent of A, B, and D? The answer is, no matter what the 
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other node values are, E will be 1. The rifleman is an expert and never misses. We can conclude 
this outcome even though the following combination of node values has not been observed (i.e., 
A-E being 0 0 1 0 1, respectively). In fact, if X represents “don’t care” it can be concluded that 
if C = 1, E = 1 in a total of 7 situations that have not been observed (i.e., A-E being X X 1 X 1, 
respectively).

 

Figure 6: Firing Squad Intervention[4]

Moving to the final rung of the ladder, Counterfactuals, one can use M to analyze the situ-
ation where the firing squad operated as intended (i.e., A-E was 1 1 1 1 1, respectively) and 
imagine whether the outcome, E, would have been different if C had been 0 (i.e., A-E was 1 1 
0 1, respectively). Given the causal model, M, the answer is the outcome would have been the 
same. Node E would still be 1.

That this is completely obvious and even trivial is the fact that proves the point. For it is 
manifestly NOT obvious or trivial to a machine or algorithm that only has access to the data in 
Table 2. Furthermore, no amount of additional data (from a correctly operating system) would 
have helped. With a causal model though, reasoning about interventions and counterfactuals 
is readily accomplished.

An additional benefit of causal models in the form of DAGs is the ability to discover analo-
gous situations across disparate domains. This situation is depicted in Figure 7, below. The 
causal model for the firing squad in the left-most section of the figure is from the legal/law 
enforcement domain but it describes a similar system from the aerospace domain in the mid-
dle of the figure. The aerospace system is a landing gear deployment system where an Aircraft 
Commander (A) initiates landing gear deployment by authorizing the uplock hook command 
via a relay (B) which signals two hydralic actuators (C and D) to lower the landing gear (E). 
Even more generally, the analogy extends to a dual-redundant command and control system 
from the even broader domain of system reliability as shown in the right-most causal model of 
Figure 7. Thus, this demonstrates how a system that works in one domain can potentially (and 
perhaps drastically) reduce the learning curve required to understand systems in a related 
domain. Given the readily available algorithms to quantify graph similarity, the DAG becomes 
an even more attractive representation of causality.
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Figure 7:  Analogies from Causal Models

Causal Reasoning in a Sports Medicine Scenario

A more complex and realistic example[5] comes from the field of epidemiology.[6][10] The caus-
al model in Figure 8, below reflects a research team’s consensus on causal factors related to 
participant injuries during a sports game. It is not directly based on data, but rather on their 
collective experience. The question considered is: Are Warm-Up Exercises (WUE) a causal fac-
tor of Injury (I)? and, is indicated by the light-gray arrows. Data for each one of these variables 
was collected and the testable implications were analyzed to verify compatibility between the 
data and the causal model using the statistical software, R, with the package daggity. Figure 9, 
below, shows the R program. In this case, analysis revealed the causal model and the data were 
indeed compatible; all required conditional independencies were reflected in the data. 

 

Figure 8: Sports Injury Causal Model

 

Figure 9: R “testable implications” Program[5]
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Suppose, however, that the causal model was not specified correctly; suppose a causal re-
lationship was inadvertantly omitted. This is the case in Figure 10 where the directed edge 
between Team Motivation (TM) and Warm-Up Exercises (WUE) has been removed. Now the 
resulting output from the R program of Figure 9 shown in Table 3 below indicates that in three 
instances the conditional independencies of the listed variables did not hold. Namely, Team 
Motivation (TM) should be conditionally independent of Warm-Up Exercises (WUE) given Pre-
Game Proprioception (PGP), Fitness Level (FL), and Coach (C), respectively. However, the p-val-
ues (i.e., the values in the p.value column of Table 3) did not exceed the required threshold of 
0.05 and therefore this is not the case.1 Thus, an error in the causal model or, equivalently, a 
misunderstanding of causal relationships in the situation under consideration can be detected 
objectively and explicitly.

 

Figure 10: Sports Injury Causal Model with TM/WUE Edge Removed[5]

Table 3: R Output from “testable implications” Program
		    estimate	    std.error  	         p.value    	         2.5%   	        97.5%
TM _| |_ WUE  |  PGP	 0.2463031	 0.04241572	 7.273348e-07	 0.1629669	 0.3296393
TM _| |_ WUE  |  FL	 0.2397066	 0.04189577	 1.150645e-06	 0.1573919	 0.3220212
TM _| |_ WUE  |  C	 0.2287258	 0.04109466	 2.649499e-06	 0.1479851	 0.3094664

As a final result, estimates of the path coefficients can be determined from the causal model 
and the data.2 That is, a numerical estimate of the causal effect of WUE on I can be determined. 
Figure 11 shows the simple R program used to calculate the coefficients, Figure 12 shows the 
resulting output which includes various summaries of fit indices on the left (i.e., quality met-
rics for the path coefficient estimates) as well as path coefficient estimates themselves on the 
right. The causal diagram with the path coefficients annotated is shown, below, in Figure 13.

1	The null hypothesis is that the tested variables are conditionally independent (i.e., using causal terminology, d-separated). Since the p-values are less 
than the specified threshold of 0.05 the null hypothesis is rejected: the variables are not conditionally independent.

2  Data has been scaled and normalized.
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Figure 11: R Program to Calculate Path Coefficients[5]

 

 	 	 Figure 12: R Path Coefficients Program Output

 

Figure 13: Sports Injury Causal Model with Path Coefficients

Using the path coefficients, the causal effect is easily determined. The effect of WUE on I, 
i.e., f(WUE, IGP), is simply the product of the path coefficients on the light-gray causal path be-
tween WUE and I. That is 𝑰I = f(WUE, IGP) = 0.272⋅0.307 WUE  = 0.0835 WUE. The significance 
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of achieving a causal result, to say nothing of a numerical causal result, from observational 
data is considered astounding and even unbelievable or impossible by many statisticians. 
Nevertheless, this type of analysis is routine in the fields of biology, medicine, and social 
sciences and has been for decades.[4] [5] [6] [7]

Autonomous Systems and Intelligent Machine Applications

There are several fundamental areas where causal analysis can be used to advance AS and 
IM cognitive capabilities. Fortunately, much of the software needed to perform the critical 
manipulation, analysis, and testing of causal models and other data structures has already 
been implemented in statistical packages like daggity and lavaan from the R statistical soft-
ware suite and are available via Application Programming Interface (API) calls from any 
number of languages. They are also readily available in equivalent statistical and structural 
equation modeling software suites. Thus, the required foundational computational and sta-
tistical tools are in place, mature, and ready to be used in the development of the capabilities 
described below. Some ideas of AS and IM applications include the following:

mKnowledge Storage and Retrieval

	 This capability is fundamental to many, if not most, areas within AS and IM. Since the 
DAG serves as the core data structure for causal information and stores fundamental 
causal knowledge, the rich set of graph theory algorithms to analyze and characterize 
DAGs can be brought to bear. Furthermore, graphs, especially sparse graphs, can be 
very efficiently stored, retrieved, and compared. Some knowledge storage and retrieval 
capabilities include the following:

	 •	 Searching for similar causal models or those models similar (as measured by  
	 graph similarity metrics) to the situation reflected in the observed (and possibly  
	 real-time) data.

	 •	 This capability can additionally serve as a basis for discovering analogies by  
	 analyzing/comparing causal models that meet some minimum similarity threshold.

mLearning

	 •	 Given two approaches to accomplish a task, evaluate multiple virtual “what if”  
	 scenarios to discover a more efficient or effective approach (i.e., different causal paths 
	 that achieve the same effect). Routines to simulate the operation of a causal model  
	 are readily available, relatively efficient, and fast.

mDiscovery

	 •	 Build causal model(s) of the operating environment via observations alone. Employ 
	 human experts to refine the models with feedback from the AS/IM as to whether the 
	 suggested refinements are compatible with the observed data.
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	 •	 Similarly, develop an IM to observe the environment via sensors/other instruments 
	 and propose causal explanations for the collected data. That is, the IM will provide 
	 plausible explanations via causal diagrams that are readily interpretable by humans.

mExplainable AI

	 •	 Given causal diagrams annotated with path coefficients that represent metrics such 
 	 as cost or efficiency, an IM or AS can explain why it recommends a course of action 
	 (COA) X over Y, “It was more efficient than any alternative. Shall I list the other COAs 
	 I considered and explain why I didn’t choose them?”

	 •	 By treating a causal diagram as a road map, existing routing and mapping algorithms 
	 and optimization routines can be brought to bear. Given a causal diagram annotated  
	 with an AS’s or IM’s ability to influence certain causal outcomes and the cost to do 
	 so (both of which may vary over time), the AS/IM can readily explain why a task was 
	 done the way it was at that particular time, “I would have accomplished the task in the 
	 preferred way, but at the time, my ability to modify this system parameter was 
	 disabled/malfunctioning.”

mExperiments without (more) data

	 •	 The question, “what would happen if I did this?” can be investigated by direct  
	 manipulation (i.e., intervention) of the causal model.

	 •	 The question, “what would happen if I had done this instead?” can be explored using 
	 the causal model to imagine alternative outcomes.

	 •	 The resulting causal models can be compared to the current/actual model of reality to 
	 evaluate alternative COAs.

mPolicy evaluation

	 •	 The question of whether a person/organization/system is conforming to a given  
	 policy can be determined by comparing the policy (i.e., a causal model of how the 
	 world “should” be) to data from the real world. If the causal model and the data are 
	 compatible, this indicates the specified policy is being followed.

	 •	 If they are incompatible, alternative models that are compatible with the data can 
	 be generated and compared to the should-be model to identify the possible areas of 
	 non-compliance. 

There are many other potential AS/IM applications, but those identified above serve to 
demonstrate the rich and diverse areas in which causal reasoning is both applicable and can 
bring unique capabilities to AS’s and IM’s.
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Causal Reasoning Framework (CRF)

The Causal Reasoning Framework (CRF), as shown in Figure 14, organizes the foundation-
al components needed for causal inference and reasoning into a unified whole. The CRF is 
intended to be the basis for further experimentation and research into causal analysis and 
inference. To provide maximum flexibility, CRF was developed using open source, royalty-free 
components. The two main components of CRF are Soar[11] and R.[12] Soar will be explained in 
more detail below.

 

Figure 14: The Causal Reasoning Framework (CRF)

Briefly, however, Soar is an open-source cognitive architecture whose functional capabil-
ities and architectural elements mimic the principle areas used in human cognition. Soar 
has been in development for over 35 years, is well-documented, and provides robust and 
stable computational building blocks for CRF. The inherent strength of Soar is its cognitive 
reasoning architecture.

R is a programming language and software environment for statistical computing. It is wide-
ly used in the area of AI, ML, causal analysis, and of course, statistics. It has a large and active 
user base and a core set of packages with over 15,000 additional packages available. It is 
supported on Windows, Linux, MacOS, and other platforms. R serves as the computational 
platform for Soar. The inherent strength of R is its rich statistical capabilities and robust API.

The final component of CRF is RSoarJava, which is a Java-based, “wrapper” application that 
is intended to provide user interface and task management functionality. It currently has a 
rudimentary capability to exchange data with both Soar and R via their respective APIs. RSoar-
Java’s inherent strength is flexibility.

Soar, the cognitive architecture for CRF, is ideally suited for causal reasoning and analysis in 
that Soar presumes some initial state and a desired state and then applies operators to move 
towards the desired state. The Soar architecture includes the general capabilities and logic 
for automated decision-making, multiple types of learning, problem solving, and hierarchical 
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planning. This greatly reduces the technical risk as development efforts can be directed to 
formulating the Soar rules, productions, and other procedures to develop causal applications 
rather than developing and debugging fundamental cognitive memories, capabilities, and 
learning mechanisms.

Figure 15 below shows the major architectural elements of Soar. Working Memory is a shared 
short-term representation of the current situation represented by a single, connected, directed 
graph. Production Memory stores knowledge about how to do things (e.g., procedures). Seman-
tic Memory contains long-term contextual knowledge about objects or concepts as represented 
by disconnected graphs consisting of multiple directed sub-graphs. Episodic Memory captures 
temporally ordered information along with the context of when and how an episode was experi-
enced. Reinforcement Learning (RL) can be used to guide operator selection based on a reward 
function, chunking captures general knowledge gained from impasse resolution. Semantic and 
episodic learning derives knowledge based on past experience. Functionally, the knowledge 
contained in Soar episodic and semantic memory is stored in a memory-based SQLite database. 
Soar supports all major platforms, is open source and has a domain independent API. It has 
bindings to many languages including C/C++, Java, Python, and TCL. 

 

Figure 15: The Soar Cognitive Architecture[11]

In Figure 16 below, the CRF inference engine is shown. It has been adopted wholesale from 
Pearl’s inference engine[13] and serves as the paradigm for CRF component interaction as well 
as for the presumed workflow resulting from a causal query, which the following description is 
based on.[13] The engine accepts three inputs and produces three outputs. The directed arrows 
in the figure indicate information flow between inference engine components. The icons in the 
blocks of the inference engine indicate the CRF component providing that functional capabili-
ty. On the input side, the Query is presumed to be supplied by a CRF user via RSoarJava, while 
initial causal model(s) (i.e., Assumptions) and the Data is provided via domain experts and the  
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domain, respectively. On the output side, Soar takes as input the causal model(s) and the query 
and formulates the “Estimand,” ES. That is, the schema or recipe for answering the query. The 
Estimand, ES and the data is used by R to calculate an Estimate or answer to the query, S. Fit 
Indices, F, measure how well S answers the query and is produced by R. As can be seen in the 
figure, these results are provided to Soar. As conceived below, Soar provides the heavy lifting 
with respect to acting on the causal inferences made by the inference engine to accomplish any 
tasks associated with the AS/IM applications.

Figure 16: CRF Inference Engine based on[13]

Using Pearl’s inference engine design as adopted and incorporated into the CRF, the “7 tools 
of Causal Inference”[13] can be realized and used to power new and unique applications for AS 
and IM. These tools include the following:[13]

1. Transparency and testability via encoding causal assumptions

2. Intervention and control of confounding via do-calculus

3. Answer “what if” questions via developing algorithimitization of counterfactuals,

4. Assess direct and indirect effects via causal mediation analysis

5. Robustness (i.e., adaptability, external validity, overcoming sample selection bias) via 
        do-calculus

6. Recovery from missing data via assessing causal model(s) of the “missingness” process

7. Causal discovery via evaluation of models compatible with collected data. 

Cyber Defense Strategy Observations

An increasing number of industry insiders believe more creative thinking, more research, 
more knowledge management and more causal reasoning with autonomous systems and in-
telligent machine applications—not just more technology—is needed. Dr. Thomas Homer-Dixon 
outlined this ingenuity gap, “in general, as the human-made and natural systems we depend 
upon become more complex, and as our demands on them increase, the institutions and tech-
nologies we use to manage them must become more complex too, which further boosts our 
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need for ingenuity. The crush of information in our everyday lives is shortening our attention 
span, limiting the time we have to reflect.”[14] It is these increasing demands, combined with 
today’s greater network complexity, and rising social unpredictability, that make it more criti-
cal than ever that smart technical and social solutions be ready at a moment’s notice. The MIT 
scientist Edward Lorenz’s Chaos Theory is also used to describe how small changes can lead to 
widely varying results and path dependence.[15] As such, it is essential to leverage a new cyber 
situational awareness (SA) model that incorporates the aforementioned: causal reasoning with 
autonomous systems and intelligent machine applications.

Protecting enterprise networks and providing mission assurance without significant autono-
mous systems supporting cyber-SA and warning capabilities will continue to be a challenging 
mission. Without causal reasoning with autonomous systems, we are left with a fragment-
ed, imperfect view into enterprise networks and how cyber assets map to tasks, objectives, 
and missions. This incomplete view thwarts threat detection, trend analysis, and preemptive 
actions which fosters slow or non-existent reactions to threats and changing conditions. An 
environment like this constricts a senior leader’s decision-making space. Cyber-SA for most 
enterprises is presently disjointed, rudimentary, ad hoc, too focused on technical analysis, 
lacking important cyber threat intelligence data feeds from supporting providers, and miss-
ing actionable, contextual analytics provided by causal reasoning within autonomous systems. 
Moreover, personnel are currently delivering very limited strategic cyber-SA capabilities for 
senior leadership. 

This flawed view can be operationally blinding to any organization. Initial progress has been 
made today by many organizations to increase their causal reasoning with autonomous sys-
tems capabilities to enhance their organizational cyber-SA capabilities, for example, security 
operations centers with advanced networks and AI algorithms. However, many organizations 
may further strengthen their cyber-SA and warning capabilities by weaving an empowered 
cyber-AI construct with causal reasoning attributes into their enabled mission assurance strat-
egy. This construct has a high return on investment for any organization operating in today’s 
high threat environment. 

The time has arrived for a new model, more ingenuity, and the recognition of the importance 
of cyber-SA in defense of an organization’s enterprise. What matters in transforming an orga-
nization’s cyber–SA is causal reasoning with autonomous systems that increase intelligence, 
integration, speed, analytics, expertise, and resiliency. Enacting just such a cyber-AI causal 
reasoning with autonomous systems framework can and will enable an organization to more 
effectively protect itself today and in the future. 
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CONCLUSION
Causal analysis is essential for realizing the vision of human-like reasoning: it brings the 

ability to determine cause-effect relationships and provides a basis for reasoning about inter-
ventions (i.e., doing), as well as what might have happened had events occurred differently (i.e., 
imagining/retrospection) which are fundamental characteristics of human reasoning. Causal 
analysis has seen widespread use and success in epidemiology, social science, and other fields 
for decades. Even so, its use in engineering, computer science, and AI, has been limited and its 
potential is just beginning to be widely recognized and applied. For all the progress that has 
been made in the field of AI, machines with human-like intelligence are still not a reality. Like 
the story of Theseus and Dr. Shannon’s electromechanical mouse, there is promise for those in 
the field of AI to find a path through the maze as well.  
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