
SPRING 2020 | 169

SIMO HUOPIO

A Quest for
Indicators of
Security Debt

Simo Huopio

ABSTRACT

Security Debt (SD) manifests itself every day: In the media, we can witness stories
about debt defaults: significant data leaks, disruptions of service, and businesses
of global companies affected by security incidents. Critical infrastructure custom-
ers need more practical tools to ensure that the SD is properly identified in order

to make informed risk decisions. Existing tools like security audits and cross-referencing
system configuration with available vulnerability information do reveal a lot of data regard-
ing the present state of the system. Many tools that can bring up the hidden security issues
like ones included in Secure Development Lifecycles (SDLC) are tuned for the product cre-
ation. Some of them can be taken into good use by the customer, but for that, the system
should be already procured and in place. In practice, the customer would benefit from a
comprehensive and realistic view of the security stance of the system when it is being pro-
cured to minimize the nasty surprises the underlying security issues are prone to bring.

This paper reviews the existing approaches used for managing Technical Debt (TD) and
continues the discussion about Security Debt. Using this information, a proposal for the
Security Debt Indicator Framework (SDIF) was constructed.
 Keywords: security debt, technical debt, security tools, SDLC

INTRODUCTION

1.1 Security Debt

Security Debt (SD) is a security domain specific adaptation of well-established Technical
Debt (TD), which represents all the work that is left undone in order to gain short term
speed and flexibility in product creation. Technical debt concept adoption has been promi-
nent in areas of industry where investments are significant, the systems have an extended
lifetime, and modifications and new feature development is common in the middle of the

© 2020 Simo Huopio

170 | THE CYBER DEFENSE REVIEW

A QUEST FOR INDICATORS OF SECURITY DEBT

system lifecycle: e.g. aviation, maritime, power and utility, and military[1-3]. In the context of
software, TD has been researched mainly regarding what effects it has on the maintainability
and the cost of the project. Its effects are apparent: All software projects take some TD but tak-
ing an uncontrolled amount of it makes the projects struggle in the end with hard to maintain
code and inadequate architecture. There are also numerous examples of catastrophic failures
where vast amounts of development work had to be scrapped, and the work had to be started
all over again[4-10].

Security Debt was coined by Chris Wysopal in 2011 and has been further discussed by Dan
Geer, and David Conway in the specific context of software[11,12]. The exemplary white paper by
Whitehouse and Vaughn[13] kept the discussion going[14]. From these references Security Debt
can be defined as all security related work which is not done at an optimal time in order to
mitigate all the security issues in the system, known or unknown. The security issues, bugs,
and flaws in the system are symptoms of underlying security debt.

Latent, unidentified security issues in the code are transferred to identified security debt
with security measures within the development project[13]. These measures are usually formal-
ized as a Secure Development Life Cycle (SDLC). When the security debt is made visible, risk
decisions can be made with the information: Some debt is considered worth fixing, some debt
is accepted. So even with SDLC in place and executed properly, there will still be security debt,
it will just be visible and in actionable form; not latent and unknown as before.

Whitehouse and Vaughn state that it is common that only the most high-profile security
issues are getting fixed, while the low priority issues are left unhandled[13]. This approach can
leave a cumulatively increasing number of lower level issues in the system, which can have a
compound effect equal to or greater than a single high severity security bug. Managing this
type of security debt is a challenge worth addressing in the new versions of SDLCs.

In the software domain, the security debt has its distinct differences from technical debt:
The TD concentrates on the effects, risks, and cost to the manufacturer doing maintenance and
further development. The amount of cumulated SD by itself does not add friction or otherwise
hinder the system maintainability, but it incorporates significant risk to the business and data
of the end user. According to Ernst et al.,[6,15] the amount of TD is usually quantified as devel-
oper work, the amount of work needed to pay back the debt in the code. At the same time, the
effects of TD to the actual end product are harder to estimate. On the other hand, the quantity
of SD can be hard to estimate as it can hide in a compound of rather small issues. While its
effects are easily quantifiable, especially in hindsight: even the smallest security breaches in
the news are quoted to cost millions.

While SD is not as easy to quantify as TD, the fact that a large amount of SD is a potentially
massive liability to customers makes it an important research subject. Large amounts of TD
in the system is also a risk to the customer, but in most cases, TD is more the system vendors

SPRING 2020 | 171

SIMO HUOPIO

liability. The broader adoption of the Security Debt metaphor could help the security-conscious
customers of large and complex software to gather and communicate the security posture of
the system in a more comprehensive way.

1.2 Critical Infrastructure customer needs

The viewpoint of this research is of a customer procuring and maintaining a Critical Infra-
structure (CI) system. Typical characteristics for such systems are, for example, planning for
an extremely long lifecycle (especially by software industry standards), security-conscious and
sensitive operating environment, and the unique role of the government entity as a procurer
and operator for the finalized system.

The extended lifecycles of such systems will, by itself, mean that system configuration will
go through many phases throughout its lifetime: There will be new types of subsystems intro-
duced in a mid-life update after years of the systems first version was taken into use. Some
subsystems will face obsolescence and will be replaced with a more modern alternative with
some considerable friction. Overall, there will be a technology-security paradigm, and testing
technology changes throughout the software industry, which will challenge the fundamental
system requirements many times.

Many of the mentioned characteristics can pose extra challenges in defining, onboarding,
operating, and maintaining the software integrated into the system. In effect, the maintenance
of such a system is more like a research and development project. If the system that has no se-
curity issues at the time of procurement is not actively maintained and adapted to the changing
environment, the end user is taking a considerable risk that the system will face obsolescence
in couple years.

In this context, the concept of Security Debt is very well-suited to communicating the securi-
ty-related risks of the various aspects of the system in one universal way. As a further develop-
ment of that notion, it was identified that developing indicators for Security Debt should result
in a concrete tool that could directly be taken into use in the help of Critical Infrastructure
procurement[16].

Presently the tools of analyzing and managing the technical debt—let alone the new concept
of security debt—are designed to be used in the product creation. The CI customer needs con-
crete ways to assess the security stance of the system while at the same time having much
more limited access to the source code, the underlying things behind the architecture and
design choices. The customer communication about such implementation details with the sys-
tem vendor during the procurement process is limited. Making sure the system requirements
are met and that the system onboarding process and the maintenance contract will fulfill the
customer needs has enough work without going through the underlying details. Nevertheless,
the customer carries the full risk of security issues, while the manufacturer’s responsibility is
usually very strictly managed.

172 | THE CYBER DEFENSE REVIEW

A QUEST FOR INDICATORS OF SECURITY DEBT

1.3 Research Question

Breaking down the SD in the CI system end user point of view, we can identify the following
distinct areas of SD.

a)	The SD that cumulates in the system during the product creation

b)	The SD that arises from newly discovered bugs in the system during the system lifecycle

c)	 The SD that cumulates from system configuration changes during the system lifecycle

d)	The SD that cumulates from the environment and the usage changes during the
system lifecycle

Considering the phase of system procurement, the end user needs way to estimate the
amount of SD in the system (a), and the ability of the supply chain and the customer to identify
and handle the new SD that is created or identified during the system use (b-d). The scope of
this research is to create indicators pointing out issues that would prevent end user meeting
these needs. The end-user usage of tools and methodologies for analyzing the software binaries
or source code, which have been identified as good practice for CI systems in[16] is left for later
research.

From these needs a research question was crafted:

RQ: What kind of indicators could be used to identify the potential for Security Debt in
the procurement and maintenance of a Critical Infrastructure system?

2. METHOD
The chosen approach was to use the usage of the SDLC tools and identify best practices for

managing SD and security-related TD by the vendor and possible integrators as starting point
for constructing the indicators. The researcher used the SDLC standards also as a source for
the best practices for the Critical Infrastructure system software maintenance.

This research used a literature study of Technology Debt done for the previous publication,
“Thou shalt not fail - Targeting Lifecycle-Long Robustness while being vigilant for the Black
Swans” [16] as a baseline. In addition, a new search was done to widen and update the selection
of articles related to the Security Debt, SDLC and security requirements of software project.
IEEE Xplore service was used as a primary source for the searches and the papers.

There is a considerable amount of research being done regarding TD in software. Most of it is
concentrates on analyzing debt in the light of the work needed on the implementation of future
new features, and the software maintenance. Technical Debt is seen as a slowly increasing fric-
tion in the software development activities, which must be managed or further development
will face serious obstacles. TD is usually measured in units of work time or the equivalent cost,
and there is research that strive to validate this measure [2,4-10,17-21].

SPRING 2020 | 173

SIMO HUOPIO

In the specific field of technical debt and security, or separately, security debt, there were not
many new research papers found. The technical debt-related terms were found to be commonly
used by the software engineers when discussing background for security issues[4]. There was
also research regarding mapping different aspects of TD to security issues[22-26]. Security debt
was not usually used as a distinct term, but there were some exceptions. There were numerous
news articles stating that security incidents were primarily caused by lax security culture, or
badly maintained systems [4,7,11,13,14].

A separate search was done to identify the research regarding software security manage-
ment tools, SDLCs and security requirements. Related standards, models, and requirements
tools were identified and familiarized[27-31].

3. APPLICATION

3.1 Starting points from the literature

According to the material, the following tool types were identified as a suitable basis for con-
structing the identifiers for security debt:

mOriginal system requirements: Analysis of the requirements used in system creation
	 related to security: non-functional requirements regarding robustness, integrity and 		
	 maintenance.[7,25,26]

mSecure Software Development Process. SDLC related technical tools, including
	 software composition analysis, threat emulation, robustness testing, and security
	 issue management.[13,14,32-38]

mTechnical debt management: Tools used in TD estimation that are not included in
	 SDLC tools: Architectural and other source code level complexity analysis, software
	 uality modelling and assessment tools and related standards.[2,5-7,20]

mCustomer requirements: Analysis of the requirements used in system procurement.
	 In addition to the actual security feature and non-functional requirements, the
	 requirements related to SDLC, security standards, and vulnerability information
	 exchange.[16]

mOperations: Analysis of the actions related to the secure operation of the system:
	 configuration, training, usage environment and the usage in conjunction with
	 other systems.[39]

Using this list as the starting point, a prototype of the Security Debt Indicator Framework
(SDIF) was constructed.

3.2 Indicator design choices

The SDIF areas were chosen using the tool types discovered from the source material. The
use case for the indicators was a very security-conscious customer who was procuring critical

174 | THE CYBER DEFENSE REVIEW

A QUEST FOR INDICATORS OF SECURITY DEBT

infrastructure system. The data collection was assumed to be done via a dialog with contacts
of the system vendor, system integrator and the owner of the to-be-procured system or the cus-
tomer. The dialog could be implemented as a combination of interview, written questionnaire
and document exchange. Should the customer decide so, some of the needed information could
be requested through requirements in the procurement process.

The prototype was constructed so that, at the first stage, a rough maturity level was mapped
onto each of the SDIF areas with a series of questions. These questions indicate the adoption of
best practices as identified by the literature search. At the same time, the availability of further
information and data sources was acquired. The result was scored to give a rough top-level
indication of how the security debt is handled, which can be useful within the system procure-
ment process.

Table 1: SDIF areas

SDIF Areas

A Vendor / Integrator internal system requirements
B Vendor / Integrator internal software security process
C Vendor / Integrator internal technical debt management process
D Customer system requirements and customization

E Customer capability on the security analysis
F Customer capability on the secure operation of the system

The questions related to SDIF areas A to C are directed to the system vendor. The same set of
questions can be used for an integrator or another third party in a similar role to the system.
The questions related to areas D to F are directed for the customer itself. All areas are listed in
Table 1.

Phase 1 Phase 2

SDIF areas
A, B, C

(system vendor)

Expert
Analysis

Expert
Analysis

Expert
Analysis

data

data

data

data

data

data

SDIF areas
A, B, C

(system integrator)

SDIF areas
D, E, F

(system customer)

Security Debt
Awareness & Data

Figure 1: SDIF process

Going through all the areas will give the customer data from multiple dimensions of product
creation, maintenance and the planned operation of the system. The process will also give sev-
eral additional sources of information which can be used to focus on the implementation of a
specific area. The overall process is illustrated in Figure 1.

SPRING 2020 | 175

SIMO HUOPIO

3.3 High-level questionnaire

The prototype SDIF questionnaire is available in Appendix A.

With the first phase of general questions, the customer can get a rough idea of the maturity
level of the security debt related choices made in the system. The availability of further data in
each SDIF area and the interviewee confidence in the process was also mapped.

3.4 Additional data streams and actions to analyze them

Going through the questions related to each of the high-level SDIF areas will result in addi-
tional data streams that will need to be quantified and further analyzed.

It is to be expected that at least some of the data that is requested from the system vendor
will be business sensitive, and the vendor may have some reluctance to opening the process.
For example, there might be a conscious decision by the vendor to gather TD in the system in
order to meet the time to market demands. If the SDIF information is requested in the form of
product requirements, this might impact the pricing of the product in order to offset the busi-
ness risk the vendor is taking in revealing the data.

In some selected areas, the additional data is both straightforward to share and have immedi-
ate value. The most evident data streams are listed below with their primary analysis approach.
When directly applicable, the related SDIF question (available in Appendix A) is supplied in
parenthesis. In other areas, the analysis of the data has to be done via expert opinion analysis.

A: Vendor internal system requirements

mList of non-functional requirements (A1) to be analyzed to know the case thoroughly.

mStatistics and trends regarding the test results against the non-functional
	 requirements (A2). This data should show constant testing activity and the stability
	 of the software.

mTimeline on handling third-party updates (A5) to be analyzed against the customer’s 	
	 own expectations.

mHow long the system will be under active development, and how long the maintenance 	
	 period will last until it is possibly replaced by succeeding product (A8 & A9)? This data 	
	 should be analyzed against the customer’s own plans on the system life cycle.

B: Vendor internal software security process

mAnalysis of the data that will be sourced from the vendors SDLC implementation
	 (B1 & B7): Threat analysis results and follow-up, risk assessment documentation,
	 security testing results and trends. All critical threats should be mitigated, and the
	 list of accepted security issues (threats, bugs, and misuse) should be acceptable to
	 the customer. This data can also be reused in customer-side threat analysis work.

176 | THE CYBER DEFENSE REVIEW

A QUEST FOR INDICATORS OF SECURITY DEBT

mAnalysis of BSIMM, or other SDLC maturity metrics data (B3 & B6) should conform
	 intuitively to the customer expectation of the vendor and the product maturity.

mThe used vulnerability feeds followed by the vendor (B8) should include all used
	 3rd party software components.

mData from possible bug bounty programs (B9) should match the data from
	 non-functional requirements testing. The found issues should be properly mitigated.

C: Vendor internal technical debt management process

mThe metrics from the TD management process (C1 & C3) will be cross-correlated
	 with customers own testing and assumptions.

mThe vendor-internal software QA metrics (C2, C4, C5) should show constant
	 operation and overall good software quality.

mThe data available about the vendor’s approach to TD can be used in customer-side
	 risk assessment work.

D: Customer system requirements and customization

mAnalysis of the requirements document with all of its detail (D1-D4).

mRed teaming against the customer customization and configuration of the
	 system (D5-D9).

E: Customer capability on the security analysis

mOn a security sensitive system all of the listed capabilities are considered good practice. 	
	 Any omissions should be carefully analyzed and written down as accepted risk.

F: Customer capability on the secure operation of the system

mAll mentioned data should be available for further analysis. Any omissions should
	 be carefully analyzed and written down as accepted risk.

3.5 Usage, balancing, and further development

The described process at its present form requires manual work to conduct. It is suggested
that in the first phase, the customer go through questions with the vendor in an interview for-
mat. This approach gives the opportunity to make quick clarifications regarding the questions
and the subsequent data. Gaining access, searching, and packaging the requested additional
data in phase two takes time, as does forming expert opinions.

It is evident that, should any of the requested data be set available, the result will be bene-
ficial to the overall security of the system. Applying these indicators before the procurement
phase has begun could have the most significant impact on this approach. Then, in the best
circumstances, scores from these sections could be used as one parameter in the procurement,
even before the system requirements are finalized.

SPRING 2020 | 177

SIMO HUOPIO

System updates that occur in the middle of its lifecycle can bring significant changes to
the system’s functionality, usage, and connectivity. These are points where security debt can
quickly pile up. Applying SDIF on this phase, even when it has not been applied before, can
help the customer avoid potential new security debt. SDIF can give excellent inputs to threat
emulation, should the customer also want to apply it at this phase.

The result of this work is a comprehensive starting point for analyzing the critical infrastruc-
ture software system in a way that the presence of Security Debt can be indicated and the acts
of mitigating it can be started before the related risks are realized.

4. DISCUSSION
4.1 Map and compass on hand

SDIF has been constructed in order to help the customer verify that the best practices in
minimizing and handling security debt are in use. The absence or improper use of the tools and
approaches mentioned by SDIF is an indicator that the SD is not properly controlled.

The present scope of SDIF cannot be used as a comprehensive indicator of actual SD in the
CI software, even though enough data from vendor SDLC process could give some insights.
The only way to know the amount of SD is to acquire even deeper knowledge of the software
architecture and test results and additionally, to use one’s own analysis and testing tools to
verify the findings. However, before that can happen, most of the tools and methods mentioned
by SDIF must be in use.

Applying the SDIF process will, in any case, increase the customer’s knowledge of how the
co-operation with the system vendor and possible involved third parties is planned to work
should any security incident happen, be it news about new vulnerabilities on the platform the
system is built on, or penetration testing results that point a finger at lousy configuration.

We now have a prototype of this framework and we are working to adapt it to internal use.
Applying the framework will help the customers be much more knowledgeable in the procure-
ment process, and at the same time, give a positive signal to the companies who have taken
secure development seriously. Proper implementation and further development of SDLCs is
imperative in order to add the ruggedness needed for the critical infrastructure to survive in
the hostile threat landscape.

4.2 Rocky road ahead

Procuring an extensive, critical system already promises a daunting fight through bureau-
cracy, massive requirements and service level description documents, and a multitude of sup-
plements. Taking on the additional steps to perform an obscure technical risk assessment
might be a too much to take on.

178 | THE CYBER DEFENSE REVIEW

A QUEST FOR INDICATORS OF SECURITY DEBT

Emphasizing the security and technical debt aspects during the procurement process can
end up with a hefty price tag. This is a risk especially when the customer implies that the
vendor should give out sensitive, internal data that is used in the internal risk assessments.

Still, the assessment of security debt handling cannot be ignored. It would mean too much of
blind risk taking. The way forward will be a further development of related standards, reliable
maturity models, and other ways to convey the data about the product creation and mainte-
nance process to the customer. Then, it will be easier to trust that the system has been created
with due diligence, and the inevitable incidents can be handled in a way that do not lead to
catastrophes.

4.3 Quest continues

The next step with SDIF will be testing it with real systems, ones that are already in use and
ones that will be procured. It will also be tried in the context of open source software (OSS)
onboarding; in this case, the framework might need a variant where the relevant factors can be
extracted from the OSS project, the code, documentation and the community itself. An exciting
experiment will also be to analyze the data gathered in SDIF using the different security-audit-
ing criteria that are in use on different nations for governmental use. 

5. ACKNOWLEDGEMENTS
I want to thank my employer for the support for my research and for openness to give my

new ideas a chance in the procurement pipeline. The colleagues on my research group at FDRA
and Professor Juha Röning at the University of Oulu also deserve a big thanks for their support
and comments.

Author Bio

Simo Huopio Mr. Simo Huopio is currently working as Research Manager, Cyber Defence, at Finnish Defence Research
Agency (FDRA). He received his Master's Degree (CS) from Helsinki University of Technology in 1999 and
has since worked in multiple mobile and information security roles in F-Secure and Nokia before joining
the Finnish Defence Forces. In addition to his work at FDRA, he is a doctoral student at the University of
Oulu. His professional interests include software robustness testing, threat analysis, and practical cyber
defence capability development.

SPRING 2020 | 179

SIMO HUOPIO

NOTES
1.	 R.G. Muñoz, E. Shehab, M. Weinitzke, R. Bence, C. Fowler, S. Tothill, P. Baguley, Key Challenges in Software Applica-

tion Complexity and Obsolescence Management within Aerospace Industry, Procedia CIRP 2015, 37, 24-29.
2. 	 Z. Li, P. Avgeriou, P. Liang, A systematic mapping study on technical debt and its management. J Syst Software 2015, 101,

193-220.
3. 	 B. Bartels, U. Ermel, P. Sandborn, M.G. Pecht, Strategies to the prediction, mitigation and management of product obsoles-

cence, John Wiley & Sons, 2012.
4. 	 R.L. Nord, Software Vulnerabilities, Defects, and Design Flaws: A Technical Debt Perspective, Fourteenth Annual

Acquisition Research Symposium, Naval Postgraduate School, 2017, 67-75.
5. 	 T. Besker, A. Martini, J. Bosch, Impact of Architectural Technical Debt on Daily Software Development Work - A

Survey of Software Practitioners, 43rd Euromicro Conference on Software Engineering and Advanced Applications, 2017,
278-287.

6. 	 G. Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou, A. Ampatzoglou, How do developers fix issues and pay back
technical debt in the Apache ecosystem? 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), IEEE, 2018, 153-163.

7. 	 N.A. Ernst, S. Bellomo, I. Ozkaya, R.L. Nord, I. Gorton, Measure it? manage it? ignore it? software practitioners and
technical debt, Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ACM, 2015, 50-60.

8. 	 B. Curtis, J. Sappidi, A. Szynkarski, Estimating the size, cost, and types of technical debt, Proceedings of the Third Inter-
national Workshop on Managing Technical Debt, IEEE Press: 2012, 49-53.

9. 	 Z.S. Hossein Abad, R. Karimpour, R.; Ho, J.; Didar-Al-Alam, S.M.; Ruhe, G.; Tse, E.; Barabash, K.; Hargreaves, I.
Understanding the impact of technical debt in coding and testing: an exploratory case study, Proceedings of the 3rd Inter-
national Workshop on Software Engineering Research and Industrial Practice, ACM: 2016; 25-31.

10. 	R. Marinescu, Assessing technical debt by identifying design flaws in software systems. IBM Journal of Research and Devel-
opment 2012, 56, 9: 13.

11. 	D. Geer, C. Wysopal, For Good Measure - Security Debt. ;login: 2013, 38 no. 4, 62-64.
12. 	D. Geer, D. Conway, Foor Good Measure - The Price of Anything Is the Foregone Alternative, login: 2013, 38 no. 3, 58-60.
13. 	Ollie Whitehouse, James Vaughan, Software Security Austerity - Software security debt in modern software development,

Rexc Whitepaper 2012, 1.
14. 	Nccgroup blog post: Revisiting security debt: Are we ready to have a discussion yet? Available online: https://www.

nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2018/march/revisiting-security-debt-are-we-ready-to-have-
a-discussion-yet/, accessed on May 1, 2019.

15. 	A. Ampatzoglou, A. Chatzigeorgiou, P. Avgeriou, The financial aspect of managing technical debt: A systematic literature
review. Information and Software Technology 2015, 64, 52-73.

16. 	S. Huopio, Thou shalt not fail - Targeting Lifecycle-Long Robustness while being vigilant for the Black Swans, 23rd IC-
CRTS (International Command and Control Research and Technology Symposium), November 6-9, 2018.

17. 	H. Ghanbari, T. Besker, A. Martini, J. Bosch, Looking for Peace of Mind? Manage your (Technical) Debt: An Explorato-
ry Field Study, ESEM 2017: ACM/IEEE International Symposium on Empirical Software Engineering and Measurement,
ISBN 978-1-5090-4039-1, IEEE Computer Society Press: 2017.

18. 	R.L. Nord, I. Ozkaya, P. Kruchten, M. Gonzalez-Rojas, In search of a metric for managing architectural technical debt,
2012 Joint Working IEEE/IFIP Conference on Software Architecture and European Conference on Software Architec-
ture, IEEE: 2012, 91-100.

19. 	N. Zazworka, C. Izurieta, S. Wong, Y. Cai, C. Seaman, F. Shull, Comparing four approaches for technical debt identifica-
tion. Software Quality Journal 2014, 22, 403-426.

20. A. Martini, T. Besker, J. Bosch, Technical debt tracking: Current state of practice: A survey and multiple case study in 15
large organizations. Science of Computer Programming 2018, 163, 42-61.

21. 	P.N. Bideh, M. Höst, M. Hell, HAVOSS: A Maturity Model for Handling Vulnerabilities in Third Party OSS Compo-
nents, International Conference on Product-Focused Software Process Improvement, Springer: 2018, 81-97.

22. C. Izurieta, Kimball, D. Rice, T. Valentien, A position study to investigate technical debt associated with security weak-
nesses, 2018 IEEE/ACM International Conference on Technical Debt (TechDebt), IEEE: 2018, 138-142.

180 | THE CYBER DEFENSE REVIEW

A QUEST FOR INDICATORS OF SECURITY DEBT

NOTES
23. L. Lavazza, S. Morasca, D. Tosi, Technical debt as an external software attribute, Proceedings of the 2018 International

Conference on Technical Debt, ACM: 2018, 21-30.
24. R. Alfayez, C. Chen, P. Behnamghader, K. Srisopha, B. Boehm, An empirical study of technical debt in open-source soft-

ware systems. In Disciplinary Convergence in Systems Engineering Research Springer: 2018, 113-125.
25. M. Benaroch, Managing information technology investment risk: A real options perspective. J Manage Inf Syst 2002, 19,

43-84.
26. P. Avgeriou, P. Kruchten, I. Ozkaya, C. Seaman, Managing technical debt in software engineering (dagstuhl seminar

16162), Dagstuhl Reports, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik: 2016.
27. C. Banerjee, S.K. Pandey, Software security rules, SDLC perspective. arXiv preprint arXiv:0911.0494, 2009.
28. G. Disterer, ISO/IEC 27000, 27001 and 27002 for information security management, 2013.
29. C. Gikas, A general comparison of fisma, hipaa, iso 27000 and pci-dss standards. Information Security Journal: A Global

Perspective 2010, 19, 132-141.
30. N.F. Khan, N. Ikram, Security requirements engineering: A systematic mapping (2010-2015), 2016 International Con-

ference on Software Security and Assurance (ICSSA), IEEE: 2016, 31-36.
31. N.M. Mohammed, M. Niazi, M. Alshayeb, S. Mahmood, Exploring software security approaches in software develop-

ment lifecycle: A systematic mapping study. Computer Standards & Interfaces 2017, 50, 107-115.
32. M. Gustafsson, O. Holm, Fuzz testing for design assurance levels, Linköping University, 2017.
33. B. West, M. Wengelin, Effectiveness of fuzz testing high-security applications - A case study of the effectiveness of

fuzz-testing applications with high security requirements, KTH Royal Institute of Technology, 2017.
34. S. Ognawala, A. Petrovska, K. Beckers, An Exploratory Survey of Hybrid Testing Techniques Involving Symbolic Execu-

tion and Fuzzing, arXiv preprint arXiv:1712.06843 2017.
35. Anonymous Application Threat Modeling, https://www.owasp.org 2017.
36. J.A. Ingalsbe, L. Kunimatsu, T. Baeten, N.R. Mead, Threat modeling: diving into the deep end. IEEE Software 2008, 25.
37. R. Khan, K. McLaughlin, D. Laverty, S. Sezer, STRIDE-based threat modeling for cyber-physical systems, Innovative

Smart Grid Technologies Conference Europe (ISGT-Europe), 2017 IEEE PES, IEEE: 2017, 1-6.
38. S. Hussain, A. Kamal, S. Ahmad, G. Rasool, S. Iqbal, Threat modelling methodologies: a survey. Sci.Int. (Lahore) 2014,

26, 1607-1609.
39. J. Stark, Product Lifecycle Management: 21st Century Paradigm for Product Realisation, In Product Lifecycle Management

(Volume 1) Springer: 2015, 1-29.

Nr. Query text Answer type(s)

A1 Do you have non-functional security requirements? Can you share these requirements and the related process? Mandatory: Yes/No
Optional: Free text & documents

A2 Do you test the product against the non-functional security requirements? Can you share the results? Mandatory: Yes/No
Optional: Free text & documents

A3 Do you have a common security architecture for the security features? What can you share regarding that architecture? Mandatory: Yes/No
Optional: Free text & documents

A4 Do you design and implement security features or functionality in a different manner than other features? Mandatory: Yes/No
Optional: Free text & documents

A5 Describe your software sourcing process: How do you manage requirements, quality, and software
releases with third parties?

Mandatory: Free text & documents

A6 What platforms or codebases of the product is shared with your other products? How do you handle possible conflicts
between the domains?

Mandatory: Free text & documents

A7 Is the product still in active development? Mandatory: Yes/No
Optional: Free text & documents

A8 How long are you going to support the product actively? Mandatory: Free text & documents

A9 How long will the security patches be produced? Will their availability be tied to a support contract? Mandatory: Time, Yes/No
Optional: Free text & documents

A10 How confident you are on the completeness of the internal security requirements on scale 1 to 5? Mandatory: Number
Optional: Free text & documents

Nr. Query text Answer type(s)

B1 Is there a Secure Development Lifecycle (SDLC) or equivalent in use on R&D? Can you share the process description? Mandatory: Yes/No
Optional: Free text & documents

B2 Are you following a standard like ISO27k? Can you share the details? Mandatory: Yes/No
Optional: Free text & documents

B3 Has the maturity of the company’s software security approach been evaluated with BSIMM or equivalent? Can you share
the results?

Mandatory: Yes/No
Optional: Free text & documents

B4 Do you use robustness testing in product creation? Mandatory: Yes/No
Optional: Free text & documents

B5 How do you plan and schedule the fixing of security issues? Mandatory: Free text & documents

B6 What security-related metrics do you collect and follow? Are there any metrics data you could share? Mandatory: Free text & documents

B7 Do you use threat emulation? Can you share the results? Mandatory: Yes/No
Optional: Free text & documents

B8 Are you routinely following the vulnerability feeds of the third-party components included in the product? What feeds do
you follow? What is the process to act on findings?

Mandatory: Free text & documents

B9 Do you do additional security testing on the third-party components you use? Have you found issues? Mandatory: Time, Yes/No
Optional: Free text & documents

B10 How confident you are about your software security process (range 1 to 5)? Mandatory: Number
Optional: Free text & documents

SPRING 2020 | 181

SIMO HUOPIO

APPENDIX A

Nr. Query text Answer type(s)

A1 Do you have non-functional security requirements? Can you share these requirements and the related process? Mandatory: Yes/No
Optional: Free text & documents

A2 Do you test the product against the non-functional security requirements? Can you share the results? Mandatory: Yes/No
Optional: Free text & documents

A3 Do you have a common security architecture for the security features? What can you share regarding that architecture? Mandatory: Yes/No
Optional: Free text & documents

A4 Do you design and implement security features or functionality in a different manner than other features? Mandatory: Yes/No
Optional: Free text & documents

A5 Describe your software sourcing process: How do you manage requirements, quality, and software
releases with third parties?

Mandatory: Free text & documents

A6 What platforms or codebases of the product is shared with your other products? How do you handle possible conflicts
between the domains?

Mandatory: Free text & documents

A7 Is the product still in active development? Mandatory: Yes/No
Optional: Free text & documents

A8 How long are you going to support the product actively? Mandatory: Free text & documents

A9 How long will the security patches be produced? Will their availability be tied to a support contract? Mandatory: Time, Yes/No
Optional: Free text & documents

A10 How confident you are on the completeness of the internal security requirements on scale 1 to 5? Mandatory: Number
Optional: Free text & documents

A: Vendor internal system requirements

Nr. Query text Answer type(s)

B1 Is there a Secure Development Lifecycle (SDLC) or equivalent in use on R&D? Can you share the process description? Mandatory: Yes/No
Optional: Free text & documents

B2 Are you following a standard like ISO27k? Can you share the details? Mandatory: Yes/No
Optional: Free text & documents

B3 Has the maturity of the company’s software security approach been evaluated with BSIMM or equivalent? Can you share
the results?

Mandatory: Yes/No
Optional: Free text & documents

B4 Do you use robustness testing in product creation? Mandatory: Yes/No
Optional: Free text & documents

B5 How do you plan and schedule the fixing of security issues? Mandatory: Free text & documents

B6 What security-related metrics do you collect and follow? Are there any metrics data you could share? Mandatory: Free text & documents

B7 Do you use threat emulation? Can you share the results? Mandatory: Yes/No
Optional: Free text & documents

B8 Are you routinely following the vulnerability feeds of the third-party components included in the product? What feeds do
you follow? What is the process to act on findings?

Mandatory: Free text & documents

B9 Do you do additional security testing on the third-party components you use? Have you found issues? Mandatory: Time, Yes/No
Optional: Free text & documents

B10 How confident you are about your software security process (range 1 to 5)? Mandatory: Number
Optional: Free text & documents

B: Vendor internal software security process

182 | THE CYBER DEFENSE REVIEW

A QUEST FOR INDICATORS OF SECURITY DEBT

APPENDIX A

Nr. Query text Answer type(s)

C1 Do you track the technical debt (TD) that is incorporated with the codebase? Mandatory: Yes/No
Optional: Free text & documents

C2 Do you differentiate the TD work with the rest of quality assurance? Mandatory: Yes/No
Optional: Free text & documents

C3 What mechanisms do you use for tracking the TD (for example error ticketing, backlog)? Mandatory: Free text & documents

C4 Do you routinely use static source code analysis tools for assessing code quality? Mandatory: Yes/No
Optional: Free text & documents

C5 Do you routinely use architectural health analysis tools for assessing potential issues? Mandatory: Yes/No
Optional: Free text & documents

C6 How fast do you apply the new versions of the third-party component code? How do you manage if tooling, architectural
or design changes are needed to incorporate the new versions?

Mandatory: Free text & documents

C7 How do you handle software obsolescence, or “code rot”—a situation when the underlying library or other dependency
reaches end-of-life, or the needed platform support ends.

Mandatory: Free text & documents

C8 Do you assign TD with financial value (for example “the amount of work needed to fix the issue”) Mandatory: Yes/No
Optional: Free text & documents

C9 Does your risk management process take TD into account? What other software related risks are incorporated? Mandatory: Time, Yes/No
Optional: Free text & documents

C10 How confident you are on your internal technical debt management process (range 1 to 5)? Mandatory: Number
Optional: Free text & documents

C: Vendor internal technical debt management process

Nr. Query text Answer type(s)

D1 Do you have non-functional security requirements on the system? Mandatory: Yes/No
Optional: Free text & documents

D2 Do you validate the effects of non-functional security requirements? Mandatory: Yes/No
Optional: Free text & documents

D3 Are there software security clauses that state SLA on fixing the issues on the contract? Mandatory: Yes/No
Optional: Free text & documents

D4 Are there requirements to notify, and fix the errors found on third party code included in the system? Mandatory: Yes/No
Optional: Free text & documents

D5 Will there be custom, additional R&D work on the product? Mandatory: Yes/No
Optional: Free text & documents

D6 Will there be any of your own in-house developed code running on the system? Can you share the process of managing
this codebase?

Mandatory: Yes/No
Optional: Free text & documents

D7 Will the system configuration settings default safely? Mandatory: Yes/No
Optional: Free text & documents

D8 Are there security-related instructions for the configuration? Mandatory: Free text & documents

D9 Are there a security-related manual or user training available on the system? Mandatory: Time, Yes/No
Optional: Free text & documents

D10 How confident are you that the relevant security issues have been captured in the system requirements (range 1 to 5)? Mandatory: Number
Optional: Free text & documents

D: Customer system requirements and customization

Nr. Query text Answer type(s)

E1 Are you able to do your own robustness testing on the product? Can you describe the process? Mandatory: Yes/No
Optional: Free text & documents

E2 Are you able to analyze the results of robustness testing findings? Can you elaborate on the process and resources? Mandatory: Yes/No
Optional: Free text & documents

E3 Do you have access to the product source code? Are you able to analyze and work on it? Mandatory: Yes/No
Optional: Free text & documents

E4 Are you able to send the system vendor technical error reports on any issues found? Mandatory: Yes/No
Optional: Free text & documents

E5 Are you planning to do technical security audits on the system? Mandatory: Yes/No
Optional: Free text & documents

E6 Have you done, or are you planning to do threat emulation, or threat analysis sessions regarding the system? How are you
planning to use the results?

Mandatory: Yes/No
Optional: Free text & documents

E7 How do you treat new versions of the system software? Mandatory: Free text & documents

E8 Are you planning to do Software Composition Analysis (SCA) or Bill of Materials (BoM) analysis on the system software? Mandatory: Yes/No
Optional: Free text & documents

E9 Are you following vulnerability databases and able to cross-correlate with the system software composition? Mandatory: Time, Yes/No
Optional: Free text & documents

E10 How confident you are about the capability of doing your own analysis on the product security posture (range 1 to 5)? Mandatory: Number
Optional: Free text & documents

Nr. Query text Answer type(s)

F1 Are you planning to train the staff who are going to operate the system? Mandatory: Yes/No
Optional: Free text & documents

F2 Does the training include the handling security-related configuration and incident management? Mandatory: Yes/No
Optional: Free text & documents

F3 How do you analyze the effects of the changes in the operating environment of the system (other systems, networks, way
of using the system)?

Mandatory: Free text & documents

F4 What kind of usage metrics you are collecting of the use of the system? Is any metric related to security? Mandatory: Free text & documents

F5 Do you have a Security Operations Centre (SOC) or similar, which will monitor the security status of the system operation? Mandatory: Yes/No
Optional: Free text & documents

F6 How are you planning to decide on, track and manage changes on the configuration of the system? Mandatory: Free text & documents

F7 How are you going to secure the system physically? Mandatory: Free text & documents

F8 Are you planning to engage in penetration testing activities to the system? Mandatory: Yes/No
Optional: Free text & documents

F9 How do you plan to decide on the end of life of the system? Mandatory: Free text & documents

F10 How confident are you that the product is documented, trained, and operated in the way the operation is secure
(range 1 to 5)?

Mandatory: Number
Optional: Free text & documents

SPRING 2020 | 183

SIMO HUOPIO

APPENDIX A

Nr. Query text Answer type(s)

E1 Are you able to do your own robustness testing on the product? Can you describe the process? Mandatory: Yes/No
Optional: Free text & documents

E2 Are you able to analyze the results of robustness testing findings? Can you elaborate on the process and resources? Mandatory: Yes/No
Optional: Free text & documents

E3 Do you have access to the product source code? Are you able to analyze and work on it? Mandatory: Yes/No
Optional: Free text & documents

E4 Are you able to send the system vendor technical error reports on any issues found? Mandatory: Yes/No
Optional: Free text & documents

E5 Are you planning to do technical security audits on the system? Mandatory: Yes/No
Optional: Free text & documents

E6 Have you done, or are you planning to do threat emulation, or threat analysis sessions regarding the system? How are you
planning to use the results?

Mandatory: Yes/No
Optional: Free text & documents

E7 How do you treat new versions of the system software? Mandatory: Free text & documents

E8 Are you planning to do Software Composition Analysis (SCA) or Bill of Materials (BoM) analysis on the system software? Mandatory: Yes/No
Optional: Free text & documents

E9 Are you following vulnerability databases and able to cross-correlate with the system software composition? Mandatory: Time, Yes/No
Optional: Free text & documents

E10 How confident you are about the capability of doing your own analysis on the product security posture (range 1 to 5)? Mandatory: Number
Optional: Free text & documents

E: Customer capability on the security analysis

Nr. Query text Answer type(s)

F1 Are you planning to train the staff who are going to operate the system? Mandatory: Yes/No
Optional: Free text & documents

F2 Does the training include the handling security-related configuration and incident management? Mandatory: Yes/No
Optional: Free text & documents

F3 How do you analyze the effects of the changes in the operating environment of the system (other systems, networks, way
of using the system)?

Mandatory: Free text & documents

F4 What kind of usage metrics you are collecting of the use of the system? Is any metric related to security? Mandatory: Free text & documents

F5 Do you have a Security Operations Centre (SOC) or similar, which will monitor the security status of the system operation? Mandatory: Yes/No
Optional: Free text & documents

F6 How are you planning to decide on, track and manage changes on the configuration of the system? Mandatory: Free text & documents

F7 How are you going to secure the system physically? Mandatory: Free text & documents

F8 Are you planning to engage in penetration testing activities to the system? Mandatory: Yes/No
Optional: Free text & documents

F9 How do you plan to decide on the end of life of the system? Mandatory: Free text & documents

F10 How confident are you that the product is documented, trained, and operated in the way the operation is secure
(range 1 to 5)?

Mandatory: Number
Optional: Free text & documents

F: Customer capability on the secure operation of the system

