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ABSTRACT

The decision-making behind cyber operations is complex. Dynamics around is-
sues such as cyber arsenal management, target assessment, and the timing of 
dropping a destructive payload are still ill-understood. Yet, limited published re-
search has thus far explored formal theoretic constructs for better understanding 

decision-making in cyber operations. Multiple models help to understand and explain the 
courses of action through which state cyber missions are executed, including conduct or 
restraint of cyber effects operations against target systems and networks. This paper eval-
uates four models - surprise model, duelist model, mating-choice model, and the Black-
Scholes model. Each model offers specific advantages and suffers characteristic drawbacks. 
While these models differ in application and complexity, each may provide insights into 
how the unique nature of cyber operations impacts the decision dynamics of cyber conflict. 
Keywords: Cyber operations, timing, decision-making, Black-Scholes, vvulnerability equities, arsenal management

I. INTRODUCTION
Conceptualization of operational art and logistics factors in cyber operations remains 

immature in published literature.[1] However, these factors are the sine qua non of success-
fully executing strategic intent, sustaining campaigns over time, and managing resource 
investment in what are ever costlier offensive cyber capabilities in an environment of spi-
raling complexity. Despite this, the behavior of designers, operators, and decision-mak-
ers responsible for the conduct of national cyber missions is largely discussed without a 
theoretic construct that identifies the choices, tradeoffs, and associated determinants that 
influence the courses of action that arise during cyber conflict.

At the heart of the contemporary instantiation of much of the problem space is under-
standing cyber operations’ distinct features. Indeed, there has been much writing on how 
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cyber operations have several features that differentiate them from other warfighting domains. 
According to a report from the National Academy of Sciences, cyber operations come “with 
high degrees of anonymity and with plausible deniability; [...] more uncertain in the outcomes 
they produce; [...] [and] involve a much larger range of options and possible outcomes, and 
may operate on time scales ranging from tenths of seconds to years.”[2] Cyber operations are 
also transitory in nature: they are strongly time dependent in terms of their potential to cause 
harm to targeted systems.[3] Finally, and perhaps most important, there are close similarities 
between cyber effects operations and espionage operations, or what in intelligence jargon is 
called Computer Network Exploitation (CNE) and Computer Network Attack (CNA).[4] Former 
NSA and CIA director Michael Hayden writes:

Reconnaissance should come first in the cyber domain too. How else would you know 
what to hit, how, when—without collateral damage? But here’s the difference. In the cyber 
domain the reconnaissance is usually a more difficult task than the follow-on operation. It 
is tougher to penetrate a network and live on it undetected while extracting large volumes 
of data from it than it is to, digitally speaking, kick in the front door and fry a circuit or 
two. [...] Let me go further. An attack on a network to degrade it or destroy information 
in it is generally a lesser included case of the technology and operational art needed to 
spy on that same network.[5]

The purpose of this paper is to help systematize our thinking on how these attributes of 
cyber operations affect decision making and conflict dynamics. We do this through assessing 
the potential value of formal modeling—drawing on different fields of research—to cyber conflict 
dynamics. More specifically, to what degree can we model how the nature of cyber operations 
impacts decision-dynamics of cyber conflict?

The importance of improved systematic thinking in this area has been raised as US govern-
ment posture has changed over the past several years, moving explicitly towards a vision of cy-
ber capabilities in ongoing employment, rather than as a “fleet in being.”[6] Under the concept 
of persistent engagement, cyber operations will be conducted to demonstrate resolve, counter 
ongoing intrusion and attack campaigns that directly target sources of national power, and 
impose friction and cost on the hostile actors orchestrating these malicious activities.[7] Pursuit 
of this strategic vision requires understanding both of how scarce and often-ephemeral advan-
tage within the domain may best be leveraged for operational purposes, but also how adversary 
operators, planners and decisionmakers may interpret and respond to actions conducted in the 
course of options generation and capabilities employment.

Formal modeling and policy have influenced each other since the publication of Neumann 
and Morgenstern’s The Theory of Games and Economic Behaviour.[8] While the interaction be-
tween the two fields has often been highly constructive, various unsystematic and confusing 
applications of game theory on policy issues exist.[9] A common misunderstanding of the pow-
er of game theory is that it is treated as a descriptive rather than analytical tool. Instead, as 
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Duncan Snidal indicates, “[t]he real power of game theory, for both empirical and theoretical 
purposes, emerges when it is used to generate new findings and understandings rather than 
to reconstruct individual situations.”[10] Snidal adds that “while the simplicity of game models 
leads to a clarity that illuminates social phenomena, the deductive apparatus of game theory 
allows us to infer new understandings about international politics.”[11] 

Furthermore, as an analytical tool, many are concerned about whether the lessons learned 
from formal analysis are mere spurious experimental results.[12] Yet, as Thomas Schelling writes:

What can one learn [in games]. […] Is not each game, especially ones that involve much 
human judgment and imagination and risk taking, a unique story that may never be 
repeated? […] The answer is that games are not different from real experience. Anyone 
who goes through a Bay of Pigs, a Yom Kippur surprise attack, or a battle over the 
Falklands has had an enormous learning experience. For some it can amount almost to 
a rebirth. Each such crisis [however] is unique. Few people ever participate in enough 
of them to compare them or to get a sense of relative proportions. Whether one experi-
enced the event personally or studied it as historian, one must beware of generalizing. 
The corresponding danger in games is probably no greater than in real experience possi-
ble less so because games can be replicated and varied experimentally.[13] 

Given the complexity of cyber operations, and the constantly changing character of the do-
main’s technical and tactical features, that a single “unified” theory of planning and decision 
making may serve to explain or estimate behavior by the varied actors, diverse capabilities sets, 
and highly heterogenous organizational structures by which task requirements are manned, 
trained, equipped, and executed. Within this limitation, however, it is expected that some mod-
els may have analytic if not predictive value as a lens to explore aspects of the wider problem 
space. The body of this paper assesses and compares four families of formal and game-theoret-
ic models in their ability to infer new insights regarding the way the nature of cyber operations 
affects decision dynamics on (cyber) conflict. The next section briefly reviews an existing for-
mal model applied to cyber conflict, that is Robert Axelrod’s surprise model, the only published 
study in the field to date. Section III, in turn, provides a different model on the timing of cyber 
conflict, the ‘Duelist model’, which also takes other actors into consideration. The third model, 
described in Section IV, comes from the field of biology: we show it has a fruitful application 
for attackers to decide when to drop a destructive payload or continue intelligence gathering. 
Finally, borrowing from Finance, we discuss the Black-Scholes model in Section V. The model 
provides a superior understanding of how to model arsenal dynamics for cyber commands and 
organizations. 

The results are summarized in Table 1. Overall, we find that the field of cyber conflict—
both scholars and practitioners—can draw significant insights from other disciplines to better 
capture the dynamics of cyber conflict. We have not yet fully tapped into this potential, but 
hopefully this paper has provided an initial avenue to do so.  
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Table 1. Application of Game Theoretic Models to Cyber Conflict

I II III IV

Models Surprise Duelist Search Black-Scholes
Field of Origin Politics / Economics International Relations Biology Finance

Conventional
Application

When should a
resource be exploited
for surprise?

When two duelists
approach each other,
when should they shoot?

When should an  
individual stop
searching for a mate?

How should I price an  
option with a potential  
expiration date?

Cyber Conflict
Application, 
General

Timing of cyber conflict Timing of cyber conflict Transition from cyber 
espionage to
destructive attack

Arsenal management

Cyber Conflict 
Application, 
specific

When to use a zero day 
exploit?

i.  When to hit a target 
before a rival actor 
will hit the same 
target?

ii.  When to attack a 
rival before the rival 
attacks me?

When should an  
individual stop
searching for a mate?

How to price an option with 
a potential expiration date?

Complexity Simple Simple – Moderately 
Complex

Moderately Complex Highly Complex

Utility -  Using both concepts of 
‘stealth and ‘persistence’ 
allows for better discussion 
of cyber operations Time 
dynamics.

-  Only useful if there is a 
clear overview of what  
determines an operations 
transitory nature.

-  Current application is 
highly problematic in terms 
of case study analysis.

-  The model’s primary 
weakness lies in the 
unlikelihood that all 
three basic 
assumptions hold.

-  But the model’s 
strength lies in its wide 
range of potentially 
applicability, if the 
three basic  
assumptions hold.

-  The model’s 
assumptions apply 
well to cyber conflict

-  Relatively simple 
application.

-  It cannot deal with 
non-linear processes.

-  The model provides a 
compelling way to capture 
the patching dynamic of 
software vulnerabilities.

-  The assumptions made are 
not easy to translate to 
cyber conflict.

-  The model is not only 
complex to develop, but 
will also be difficult to use 
to justify decision making.

Before turning to the discussion of the models, three caveats are provided. First, the models 
discussed here have been ordered from least to most complex, however, that increased com-
plexity does not make the model necessarily more useful or accurate. Second, though game 
theory is referred to as the “mathematical study of strategic interaction,”[14] the discussion here 
omits the quantitative elements here to the extent possible to focus on the underlying logic 
behind each model, in order to examine the transferability of this logic to the cyber domain. 
Third, there are two assumptions underlying all four models: i) states are the most important 
actors, and ii) states are rational.[15]  The rationality assumption implies that states are choosing 
the best option available to them, from a set of possible options or strategies.
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II. MODEL I: RATIONAL TIMING OF CYBER SURPRISE
In 1979, Robert Axelrod published a paper, “The Rational Timing of Surprise”.[16] The paper 

aimed to explore when a resource for surprise should be exploited. The article discusses sever-
al situations for which the model is relevant: using information from code breaking or spying, 
using a new weapon, or giving false information to a double agent. Despite the differences in 
cases, Axelrod argues that all of them present the same structural problem in determining 
whether to wait or immediately exploit the resource.

Axelrod develops a model with four parameters: 

i) The stakes vary over time; and the greater the stakes, the greater the gains from   
 exploiting a resource. 

ii) There are costs to maintaining a resource, which does not necessarily have to be   
 material costs. 

iii) Exploitation risks exposure. 

iv) Value is discounted over time—the assumption is that if the payoff were the same for  
 exploiting a resource today or waiting until a future opportunity, the choice would be  
 made to exploit it today.

In a later paper, Axelrod and Iliev applied this framework to cyber conflict.[17] The article 
explicitly states that the model can deal with only one aspect of the problem, “the timing of a 
cyber conflict, either in the form of espionage or disruption.”[18]  As the authors state, “[t]he pa-
per takes the point of view of an actor who has a resource to exploit a vulnerability in a target’s 
computer system, and a choice of just when to use that resource.”[19]  

The main conclusions of their model are straightforward. First, if a cyber resource is likely 
still useable in the future if not used today, an actor is less likely to use it today. Second, an actor 
is also less likely to use a cyber resource when there is a low probability of being able to use 
it again, i.e. where there is a low chance of “resource survival”.[20] Third, the authors find that 
an actor is more likely to hold their fire if there is the expectation that the stakes are high in a 
rare event happening in the future. Overall, as Axelrod and Iliev state, at “[t]he heart of [the] 
model is the trade-off between waiting until the states of the present situation are high enough 
to warrant the use of the resource, but not waiting so long that the vulnerability the resource 
exploits might be discovered and patched even if the resource is never used.”[21] 

The work of Iliev and Axelrod is commendable in that the model makes it possible to incorpo-
rate a more refined understanding of the transitory nature of resources used during cyber op-
erations. Unlike most earlier studies, in this paper issue is not presented as a binary variable, 
i.e. the idea that a resource can only be used once (‘single-use’), but rather as a continuous vari-
able. Also, the scholars estimate two parameters that determine whether the resource will be 
available in the next time period; ‘stealth’ and ‘persistence’. In their own words, “[t]he Stealth 
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of a resource is the probability that if you use it now, it will still be usable in the next time peri-
od. The Persistence of a resource is the probability that if you refrain from using it now, it will 
still be useable in the next time period.”[22] This distinction is important as the use of resources 
during one operation significantly increases the chances of the discovery in the next period.

In addition, the paper usefully distinguishes between different resources in contract to the 
primitive notion that all cyber resources are similarly transitory in nature. Integrating this 
more nuanced understanding into their formal model means the scholars reconcile the con-
trasting views of earlier works discussed above (although they may fail to deliberately recog-
nize this integration). The degree to which the cyber domain incentivizes a use-it-or lose-it 
dynamic or a waiting-for-the-right-moment dynamic depends on the type of capability and 
whether the stakes remain constant.

Existing research demonstrates the relevance of the rational timing model, but further de-
velopment is still needed. Additional case study examples are required to provide further em-
pirical depth. Furthermore, the study of Axelrod and Iliev has a primitive understanding of the 
requirements of cyber operations. For example, it is unclear if the model applies only to the use 
of exploits or also implants.

III. MODEL II: DUELING IN CYBERSPACE
The application of game theory to analyze conflict situations blossomed during the Cold War. 

In light of the progressive development of nuclear weapons and delivery systems, numerous 
recommendations were made whether a first strike against the Soviet Union was rational.[23]  
Considering this situation, most scholars provided a simplified model in which each of the two 
states involved in a conflict have two strategies: first and second strike.[24] 

The principle family of models that followed from this analysis (initiated by David Blackwell 
and other mathematicians in the reports of RAND corporation in 1948-52[25]) are two-person 
games of timing in an uncertain environment. These models are often referred to as ‘duelist 
models’[26] and are metaphorically seen as two duelists approach each other: the longer one of 
them waits to fire, the more likely it becomes that the other will fire first therefore striking first 
(the accuracy function increases with time). On the other hand, the closer the duelists get, the 
more likely it becomes that the first to fire will hit and disable the other (if a player fires too 
late, the opponent may hit his target earlier and the game may be terminated as the player has 
lost the opportunity to engage).

The basic features of this family of models are described by Radzik in a review paper entitled 
“Results and Problems in Games of Timing.” These features are each player has one bullet, 
which may be fired at any time; accuracy (i.e. the probability that the player hits) increases 
over time, and; the player who first hits the target is the winner and ends the game.[27] 
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The duelist models could differ in several ways based on additional assumptions. First, the 
settlement of payoffs in this game can be arranged in two manners. The first pay-off structure 
produces a zero-sum game, the latter leads to a nonzero-sum game with various outcomes: 
The winner receives one ‘unit’ from his opponent, that is, each player wishes to maximize his 
expected return (this is in line with the classic duelist model). The winner receives one ‘unit’ 
from the umpire of the contest. That is, each player wishes to maximize his winning probability 
(this is more like a marksmanship contest). Second, there are two information patterns avail-
able to players: i) A player is informed of his opponent’s action time as soon as it takes place 
(this action is referred to as ‘noisy bullet’ or ‘noisy action’). ii) Neither player learns when or 
whether his opponent has acted (i.e. ‘silent bullet’ or ‘silent action’).[28] 

Third, there are different interpretations as to what ‘uncertain environment’ could entail. 
The following accuracy functions have previously been solved: i) When there is imperfect abil-
ity to perceive opponent;[29] when duelist have uncertain knowledge about the existence of a 
bullet fitted to their guns;[30] when the appearance of the object is random and whether or not 
the players are able to obtain the object is uncertain;[31] when the bullets are only accessible at 
random times;[32] when one player has one noisy bullet and one silent bullet and is forced to fire 
the former first, whereas the other player has only a silent bullet.[33]

The value of this model would, like the previous model of Axelrod and Iliev, be in the timing 
of cyber conflict. However, the specific application of the model is slightly different: if I have a 
zero day exploit, and I know another actor has the same exploit, when should I use mine?[34] In 
Axelrod and Iliev’s model, the use of your own exploit does not depend on whether the other 
actor has the same exploit. The chance of independent rediscovery of zero-day exploits is found 
to be relatively low. A study from RAND Corporation indicates that zero-day exploits have an 
average life expectancy of almost 7 years.[35] Yet, about 25 percent of exploits will not survive 
for more than one and a half years, and another 25 percent will survive more than 9.5 years. 
Based on the data available, the RAND study was unable to provide any predictors on which 
stockpiled vulnerabilities are more or less likely discovered or disclosed.[36] This data may be 
considered representative of Blue Force inventory, provided by contract acquisition to US and 
allied programs. One may infer similarities to other actors’ capabilities sets, although it may be 
presumed that zero-day exploits sourced from underground markets would be under greater 
collision pressure with commensurately shorter viable lifespans on the shelf.

Yet, considering the growth of the zero-day market, and the potential in which two or more 
actors may source capabilities acquired from the same entity due to opacity in gray and 
black-market transactions, the duelist model seems to describe a realistic scenario. These dy-
namics are further exacerbated by recurring features of vulnerability discovery and exploit 
development research, in which “interesting” operating system, application, and firmware/
hardware targets attract similar development approaches across available attack surfaces, par-
ticularly where exploit engineers have relatively similar experiences and ongoing access to 
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earlier vulnerability disclosures from open source publication, private research communities, 
or the hacker “scene.”[37] In this case, vulnerability collision may develop not as an unanticipat-
ed factor of common supply chains, but as an emergent feature of contemporaneous exploita-
tion trends—the vulnerability zeitgeist, if you will.

The model’s primary weakness lies in the unlikelihood that all three basic assumptions will 
hold. The model’s strength lies in its wide range of potential applicability, if the three basic 
assumptions hold. The first assumption is that each player has only one bullet. Yet, it is to be 
expected that in most scenarios a state has more than one cyber option in inventory, or at least, 
could develop additional options within the actionable timeline of the conflict. The second as-
sumption is that waiting pays off, as you have a higher chance of hitting the target. This model’s 
assumption goes against the assumption Iliev and Axelrod make: if you wait longer there is a 
higher chance that your exploit will be discovered; hence waiting does not pay off. Using this 
model in terms of a cyberattack, the value of gathering more info about your target and testing 
it outweighs the costs of potential discovery of the exploit. Whether or not this is the case is 
an empirical question and goes beyond the scope of this paper. Yet, one factor to consider is 
that the trade-off likely depends on how important the actor finds minimizing the undesired 
impact of offensive cyber operations. If the attacker cares a lot about collateral damage to other 
systems besides the intended target, the assumption of the duelist model is more likely to hold.[38] 
The third assumption is that, if you do not strike, the other will strike against you—which also 
terminates the game. 

During the early Cold War period, when the great powers did not yet have a second-strike ca-
pability, this assumption was highly applicable to reality. In relation to cyber conflict, however, 
could a preventive strike be beneficial? And what if this preventive strike could deny the other 
actor’s ability to ‘hit’ back? This proposition seems unlikely in the macro sense.[39] It is highly 
unrealistic to expect that one actor could be able to conduct a preventive cyber operation, elim-
inating any possibility of the rival’s ability to retaliate through other cyber means. However, by 
targeting specific capabilities, employment mechanisms, or command and control infrastructure, 
that may have been enumerated through intelligence in advance of preventative action, this prop-
osition may valid within specific operational windows for certain planning objectives. Indeed, 
this is one of the central concepts of cost imposition upon adversary actors through friction with-
in the construct of persistent engagement, where the loss of certain capability options at a given 
moment of time forces investment in defending other surviving platforms, and regenerating new 
infrastructure, in order to accomplish espionage objectives and hold-at-risk operational prepa-
ration of the environment (OPE) posturing (prior to deployment at threshold of armed conflict.)

Beyond the application of these assumptions, however, this family of models offers a wide 
range of interesting logics to explore. First, following the above discussion on differences in 
pay-off structure and type of ‘bullet,’ the duelist model could serve different applications on the 
timing of cyber activity. These applications are summarized in table 2.[40]
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Table 2: Taxonomy of duelist model application to cyber conflict dynamics

Noisy Silent

Zero 
Sum

 I. CNA against rival
When should actor A conduct a destructive or disruptive 
cyberattack against actor B, before actor B attacks actor A?

II. CNE against rival
When should actor A conduct a cyber espionage operations 
against actor B, when actor B is also interested in conducting 
the same type of operation against actor A?

Positive 
Sum 

 III. CNA against non-rival
When should actor A conduct a destructive or disruptive 
cyberattack against a target of interest, when actor A knows 
that actor B might potentially attack this system too?

 IV. CNE against non-rival
When should actor A conduct a cyber espionage operations 
against a target of interest, when actor A knows that actor B 
might potentially attack this system too?

*  This assumes that CNA activities are immediately discovered (i.e. noisy bullet) and espionage operations not (i.e. silent bullet).
** Rival actor means an actor which is also able to conduct a cyberattack against you. A non-rival concerns an actor you may want to conduct a  

cyberattack against, but is unable to attack you

Conventional application of the model could potentially be fruitfully applied to offensive cy-
ber operations (i.e. imperfect perception of the opponent) in multiple ways. First, there are 
many situations in which the attacker has incomplete knowledge of the computer systems and 
networks of the target. Second, there may also be uncertainty about the potential undesired 
impact of a cyber operation (i.e. uncertain knowledge of the bullet). Third, as was stated above, 
CNA activities tend to follow after CNE activities. This means that a potential application of the 
‘noisy and silent bullet’ is possible too, though the game set up must be reversed: first comes 
the silent bullet, and after that, the noisy bullet. 

IV. MODEL III: SEARCH THEORY AND MATE CHOICE
The third potential model to consider is less conventional and comes from an application 

in the field of biology. Ever since Charles Darwin introduced his ideas on sexual selection in 
1871, there has been an interest in understanding evolutionary change. The possibility of evo-
lutionary change rests upon the notion that over time desired qualities in a species are more 
frequently passed on to each generation. In 1990, biologist Leslie Real wrote an influential 
evolutionary biology paper, “Search Theory and Mate Choice.”[41] Real set up a model with 
the aim to resolve four questions: [42] i) How do individuals find the best potential mates? ii) 
For how long should individuals search for mates for accepting a potential mate? iii) how are 
the critical values of acceptable mates determined? iv) What are the implications of increased 
mate competition, environmental uncertainty, variables survival, and/or mating costs for the 
decision-making process?[43]

Real built her analysis upon the assumptions made by Janetos’ earlier model on what may 
constitute an optimal policy for mate choice.[44] The following five assumptions underlie Jane-
tos' model(s): i) Individuals mate only once at any time, meaning that the model is implicitly 
restricted to monogamous or serially monogamous mating systems. ii) Mates are dispersed 
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in space such that they are encountered randomly with respect to fitness. iii) Only one of the 
sexes is discriminating. iv) The probability of a mate having a charitable fitness is based on 
a cumulative-probability density function (with a certain mean and standard deviation). The 
probability of an individual’s mating depends only on its inherent, W, and the response of the 
actively searching mate.

Real argues that Janetos neglected a key feature of the problem, which led to significant 
biases in the model: the cost of searching and sampling.[45] This radically changes the relative 
performance of the different strategies. In Janetos’ model, with no search costs, a best-of-n is 
the best strategy: the searcher should sample all potential mates in the population before mak-
ing a decision. In the case of Real’s model, there is a growing cost for the mate to continue the 
search. As Real shows, this means that now a sequential-search model will always dominate.[46]

Also note that increased search costs reduce the threshold critical value for mate acceptability.

At first sight, it seems that the situation of evolutionary biology is very different compared to 
offensive cyber operations. However, the search model could have several fruitful applications 
for cyber conflict decision making. Whereas the search model in biology imagines an individu-
al who must decide to accept or reject a mate on the basis of the sequence of encounters and a 
knowledge of the distribution of mates’ qualities, in conducting cyber operations we can imag-
ine an attacker who must decide to either deliver a destructive payload or continue intelligence 
gathering on the basis of the sequence of systems it has gained access to and the knowledge of 
the distribution of other system’s importance.

The key point is that, if an attacker decides to only conduct espionage activities the chances 
of discovery are low. In cases where the attacker uses a zero-day exploit to access the system, it 
may be able to re-use this exploit for a prolonged period.[47] Yet, if it decides to drop a destructive 
payload the chances of discovery are suddenly vastly higher. This leads to an important trade-off: 
when to move from espionage to disruptive or destructive activities (or from CNE to CNA)?[48] 

The search model provides an excellent framework to analyze this question. First, the key 
decision value in this respect is not ‘mate quality’ but the value an actor gains from dropping 
a destructive payload. Second, like searching for a mate, there are also costs in terms of con-
tinuing cyber espionage operations. There are the costs of the conducting the early phases of 
a cyber operation—reconnaissance, intrusion, privilege escalation, and lateral movement—to 
compromise a new system and / or network. There may also be costs to remaining stealthy in 
case an actor wants to maintain access to a certain system. In addition, potential other costs 
concern the potential patching of an exploit by the vendor or other change in the operating 
environment. Third, in the search model, the individual must consider what the expected fit-
ness would be from sampling an additional ‘passive mate’. In turn, an actor conducting a cyber 
operation must consider the expected value from intruding an additional computer system 
or network (i.e. what is the chance that there will be another system out there which is more 
valuable to intrude and drop a destructive payload?)
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Table 3: Overview key parameters search model: Mate choice vs. cyber attacks 

Variable Mate Choice Cyber Operation
Wcrit Decision variable: the minimally acceptable mate quality Decision variable: the minimally acceptable strategic 

value gained of dropping a destructive payload

c Cost of searching Cost of continuing cyber espionage activities

F(w) The expected fitness gain from sampling one additional 
passive mate

The expected value from intruding an additional com-
puter system or network

* For a more comprehensive overview of the equation and variables see: Real, p. 384.
** The cumulative costs in the case of cyber-attacks could be negative, i.e. value from searching. For example, if the attacker gains knowledge of the 

system which is in and of itself valuable. For example, let us imagine an actor aims to attack an oil refinery. If the espionage activity itself provides 
valuable information regarding the process of refinery, which the actor can use, it can offset the costs of dropping a destructive payload.

A key weakness of the search model of Real is that it ignores mutual mate choice in which 
both sexes are choosy; there are only ‘passive mates’ in this environment. Although this as-
sumption is problematic in her model, this assumption is more likely to hold for cyber-attacks; 
after all, no target generally wants to be attacked (honeypot and other deception systems ex-
cepted).

However, “choosiness” may be observed in real world action at differing points in more so-
phisticated offensive operations. Payload deployment choices may be constrained by temporal 
characteristics where the intended effect is not merely simple destructive execution (i.e. rm -rf 
like commands in simplified expression), but rather more complex degradation of functionality, 
particularly in ways that are less detectable or traceable. Such effects—including manipulation 
of system, application, sensor, and/or data integrity—are often highly sensitive to target con-
figuration, workload factors, and other features. These may influence the “best match” option 
at varying points in time throughout the course of an operation or longer campaign. An easily 
considered example of such a case might be given based on business continuity processes, 
in which destructive or integrity-degrading effects offer variable impacts depending on time 
between back-up cycles. More sophisticated modeling may be required across heterogenous 
target sets, as may be encountered within an Integrated Air Defense System (IADS) network 
composed of equipment acquired across multiple generations and knit together with architec-
tures of differing original design and retrofit modification. Likewise, there is much variability 
in destructive payload effects, and further effects beyond simple destruction, which may pro-
vide differing complexities for analysis under this model.

V. MODEL IV: CAPABILITIES OPTION “PRICING” AND THE BLACK-SCHOLES MODEL
The final model is from modern option pricing (i.e. a form of hedging) in finance.[49] The 

notion of options is centuries old. In the 16th century, grain dealers in Amsterdam were said 
to use options. A century later, Joseph de la Vega provided the first heuristic method to price 
and deal with exposure. And more sophisticated techniques emerged in the 19th century as 
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the financial markets developed in London, Paris, and New York. Charles Castelli was the first 
to provide a theory of hedging in 1877.[50] Bachalier followed with a theory of speculation in 
1900.[51] Modern option pricing was reborn in the 1950s. In 1955, Paul Samuelson famously 
published his work on Brownian Motion in the stock market. Black and Scholes in 1973 provide 
a new method to price options and corporate liabilities.[52]

Following this work, the Black-Scholes equation is the main tool used to price options in 
today’s market. Buying an option means buying the right to engage in a particular transaction, 
yet the buyer has no obligation to follow through on the transaction.[53] There are three types 
of options: a European option may be exercised only at the expiration date of the option, an 
American option may be exercised at any point before the expiration date of the option, and a 
Bermudan option may be exercises only on pre-determined dates before the expiration date of 
the option, typically a month.

To price an option, one tries to find a way to value its ‘dynamic hedge,’ that is, mirror the 
option’s payout using the underlying asset. When one initially creates a riskless delta hedge, 
it is only riskless at the instant it is created.[53] Hence, it needs to be continuously rebalanced. 
This requires a ‘dynamic’ hedge. The Black-Scholes has (at least) five pricing inputs: i) spot 
price of underlying asset, ii) options strike price; iii) risk free rate, iv) volatility returns of the 
underlying asset, and v) time-to-expiry.

It rests on the following assumptions: i) presence of constant risk-free rate; ii) efficient 
market hypothesis holds; iii) securities are infinitely divisible (i.e. it is possible to buy any 
fraction of a stock); iv) no restrictions on short selling; v) no opportunity for arbitrage; vi) 
the price of the underlying follows a log-normal distribution; and vii) the return of the un-
derlying follows a normal-distribution. These assumptions are subject to much criticism, and 
there are methods available to relax some of them, however the initial model shall suffice for 
this analytic purpose.

Conventional weapons’ aging is generally modeled as a gradual (log-linear) deterioration. 
Yet, this typical type of function does not hold up for cyber operations. The malleability of 
cyberspace offers, in the words of Bruce Schneier, a unique “window of exposure” for cyber-
attacks to be effective.[54] The life-cycle of  a vulnerability normally follows the following stag-
es: vulnerability introduction, vulnerability discovery, creation of exploit for vulnerability, 
awareness vulnerability by the vendor, vulnerability is publicly reported, and release of the 
patch. The procedure of these stages is not a (log)linear process. Instead, the ability to use 
an exploit damage remains constant for a certain period of time, but rapidly declines the mo-
ment the vendor discovers the exploit, or a third party with visibility into the exploit informs 
the vendor.[55] Indeed, the decay function of an exploit is characterized by ‘random crashes.’ 
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The Black-Scholes model might provide a way to model this dynamic of this life cycle. The 
use of an exploit is similar to an ‘American option’ (i.e. it can terminate at any time). The value 
of using an exploit could be modeled as a ‘Brownian motion’ with random crashes. These ran-
dom crashes may be caused by cases when other actors have used the same exploit, or when 
the vendor becomes aware of the vulnerability without an actor having used it in the past. 
Such instances may result from independent vulnerability rediscovery, or from visibility de-
rived from detection through defensive countermeasures or through counter-cyber operations 
against other similar capabilities deployed from equivalent resource inventories held by other 
actors. The model assumes that the capability price fluctuates with constant drift and volatility, 
which leads to a geometric Brownian motion model for the price path.

Exploit inventory value crashes may also result from vulnerability discovery occurring based 
on identification of similar exploit chain components in other uses, including both primitives 
as well as weaponized exploitation in the wild. This, too, may have an underlying “physics-like” 
modeling property based on the fundamental characteristics of formal mathematical proof of 
exploitability (or more likely unexploitability), in which multiple pathways may be found to 
reach the same “weird machine” state of unintended code behavior.[56] 

Overall, unlike the model of Iliev and Axelrod, or other more primitive models, when applied 
to cyber-attacks, this model does not assume that the loss of an exploit’s value is a linear or log 
linear function. Instead, if one incorporates a model with ‘random crashes’ it provides a much 
closer representation of reality. In that sense, setting up this type of model could help govern-
ment institutions to obtain a better cost estimate of arsenal maintenance.[57]

VI. CONCLUSION
This paper assesses to what degree (and which) formal models help to explain strategic 

choice and behavior in relation to cyber conflict. To this end, this paper discussed four models: 
one model already previously discussed by Axelrod and Iliev and three new models in relation 
to cyber conflict. All four models are potentially useful in explaining certain cyber conflict 
dynamics, although they have different strengths and weaknesses. It was never the aim of 
this paper to be comprehensive; there will be many deserving models and issues that are not 
covered or cited here. Instead, it is hoped that the models discussed here will serve as a useful 
doorway into a more structured understanding of cyber conflict dynamics.
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Modeling the range of the future decision space under a variety of potential scenarios finds 
new relevance as offensive cyber operations (OCO) and counter-cyber operations (CCO) activ-
ities are considered beyond the episodic events which surface as major headlines from time 
to time, but instead are more deeply considered as the product of sustained organizational 
and individual efforts by military, intelligence, and proxy forces in pursuit of competitive ob-
jectives below the threshold of armed conflict, in preparation for future conflict, or seeking 
advantage in ongoing disputes that push gray zone thresholds.[58] There is an underlying logic 
that dictates the course, pace, and evolution of such operations by rational actors with differing 
interests, balancing differing equities. To date, these logics have been understood only dimly 
through analogy to other warfighting domains, and through inherited conceptual frameworks. 
The argument has been made that offensive cyber capabilities are perhaps the first military 
innovation to emerge directly from the intelligence community.[59] If one accepts this well-sup-
ported hypothesis, it is understandable then that cyber operations to date have followed the 
logic of intelligence operations.[60]

However, as emerging capabilities are coupled ever more tightly with conventional national 
security strategies, and across military globally integrated operations concepts, extant logics 
may well be changing. At the very least, new players and new priorities are likely to alter con-
siderations of equities balancing, and perceptions of constraints, restraint or the lack thereof 
will likely differ as new audiences consider what were previously decisions taken in more rar-
efied and classified environments. The different mechanisms for signaling, public disclosure, 
parliamentary oversight, as well as generating and sustaining the public support that accom-
pany military operations may also play key roles in influencing decision-making.

Thus, much additional work is needed to capture the complexity, variability, and path-depen-
dence of offensive decision-making in cyberspace. This work may also be further enriched by 
more detailed insight into adversary specific strategic cultures (to the extent that such cultures 
may or may not be observed to exist), organizational influences, and operational experiences. 
Likewise, much of the decision space in which such logic is exercised is heavily influenced by 
the intelligence picture available to leadership, and where lacunae exist due to collection gaps, 
analytic failures, or deliberate deception impacts, the potential for misperception creates as yet 
unexplored strategic and operational risks.[61] 

Beyond theoretic constructs, it is almost certain that the rapidly accelerating pace of current 
events shall see the employment of capabilities and response by other states, many times over 
across ongoing crisis flashpoints. It is expected that a robust body of case examples will result 
from these events, which may offer unique insights for future analysis and modeling.
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